

UNIVERSIDAD LAICA VICENTE ROCAFUERTE DE GUAYAQUIL FACULTAD DE INGENIERÍA, INDUSTRÍA Y CONSTRUCCIÓN CARRERA DE INGENIERÍA CIVIL

TRABAJO DE TITULACIÓN PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO CIVIL

TEMA

ANÁLISIS COMPARATIVO DE LA RESISTENCIA MECÁNICA ENTRE CONCRETO CON AGREGADOS RECICLADOS DE DEMOLICIÓN Y CONCRETO TRADICIONAL

TUTOR
Ing. CISNEROS FARIÑO RONALD PAÚL

AUTORES
MITE BORBOR RICKY MARTIN
REYES RICARDO DARÍO JAVIER

GUAYAQUIL 2025

REPOSITORIO NACIONAL EN CIENCIA Y TECNOLOGÍA FICHA DE REGISTRO DE TESIS TÍTULO Y SUBTÍTULO: ANÁLISIS COMPARATIVO DE LA RESISTENCIA MECÁNICA ENTRE CONCRETO CON AGREGADOS RECICLADOS DE DEMOLICIÓN Y CONCRETO TRADICIONAL AUTOR/ES: MITE BORBOR RICKY MARTIN REYES RICARDO DARÍO JAVIER TOTAL ALTORIA LINCTITUCIÓN: OTRADA ALTORIA CIENCIA Y TECNOLOGÍA FICHA DE REGISTRO DE TESIS TÚTULO Y SUBTÍTUCIÓN: A CIENCIA Y TECNOLOGÍA FICHA DE REGISTRO DE TESIS TÚTULO Y SUBTÍTUCIÓN: A CIENCIA Y TECNOLOGÍA FICHA DE REGISTRO DE TESIS TÚTULO Y SUBTÍTUCIÓN: A CIENCIA Y TECNOLOGÍA FICHA DE REGISTRO DE TESIS TÚTULO Y SUBTÍTUCIÓN: A CIENCIA Y TECNOLOGÍA FICHA DE REGISTRO DE TESIS TÚTULO Y SUBTÍTUCIÓN: A CIENCIA Y TECNOLOGÍA FICHA DE REGISTRO DE TESIS TÚTULO Y SUBTÍTUCIÓN: A CIENCIA Y TECNOLOGÍA FICHA DE REGISTRO DE TESIS TÚTULO Y SUBTÍTUCIÓN: A CIENCIA Y TECNOLOGÍA FICHA DE REGISTRO DE TESIS TÚTULO Y CONCRETO TRADICIONAL TUTOR: Ing. CISNEROS FARIÑO RONALD PAÚL FICHA DE REGISTRO DE TESIS

JAVIER	
INSTITUCIÓN:	Grado obtenido:
Universidad Laica Vicente	Ingeniero Civil
Rocafuerte de Guayaquil	
FACULTAD:	CARRERA:
Ingeniería, Industria y	Ingeniería Civil
Construcción	
FECHA DE PUBLICACIÓN:	N. DE PÁGS:
2025	145 pág.

ÁREAS TEMÁTICAS: Arquitectura y construcción.

PALABRAS CLAVE: Hormigón, Materiales de construcción, Desarrollo sostenible, Ingeniería civil.

RESUMEN:

En el presente trabajo se desarrolló un diseño de mezcla de hormigón con resistencia objetivo de 280 kg/cm², siguiendo los lineamientos establecidos por la Norma ACI 211. Este procedimiento permitió determinar las proporciones óptimas de los materiales constituyentes, considerando parámetros como el análisis granulométrico de los agregados, el cálculo del módulo de finura y del tamaño máximo nominal, así como los valores de absorción y humedad superficial. Con esta base se garantizó que la mezcla cumpliera con los requisitos de resistencia y durabilidad exigidos para el proyecto.

Posteriormente, se procedió a realizar las dosificaciones correspondientes para la elaboración de los cilindros de ensayo. Se incluyó una muestra patrón (0 % de agregado reciclado) y mezclas con sustitución parcial de agregado natural por agregado reciclado en porcentajes de 15 %, 25 %, 50 %, 75 % y 100 %. Estas variaciones permitieron evaluar la influencia del material reciclado en las propiedades mecánicas del hormigón.

Las probetas elaboradas fueron sometidas a procesos de curado controlados para asegurar un desarrollo uniforme de sus propiedades. Transcurridos los periodos establecidos, se realizaron ensayos de resistencia a la compresión y a tracción indirecta (ensayo brasileño), con el objetivo de determinar la capacidad de carga y el comportamiento estructural de cada dosificación. Los resultados obtenidos permitieron establecer comparaciones entre la mezcla patrón y las mezclas con diferentes porcentajes de agregado reciclado, identificando

tendencias en la disminución o mantenimiento de la resistencia en función del nivel de sustitución. El presente análisis permitió comprobar la viabilidad técnica del uso de agregado reciclado en hormigones con fines estructurales, además, aporta información esencial no solo para la optimización de recursos también para la reducción del impacto ambiental dentro de la industria. N. DE REGISTRO (en base de N. DE CLASIFICACIÓN: datos): DIRECCIÓN URL (Web): ADJUNTO PDF: SI NO Χ **CONTACTO CON AUTOR/ES:** Teléfono: E-mail: MITE BORBOR RICKY MARTIN 0986337198 rmiteb@ulvr.edu.ec

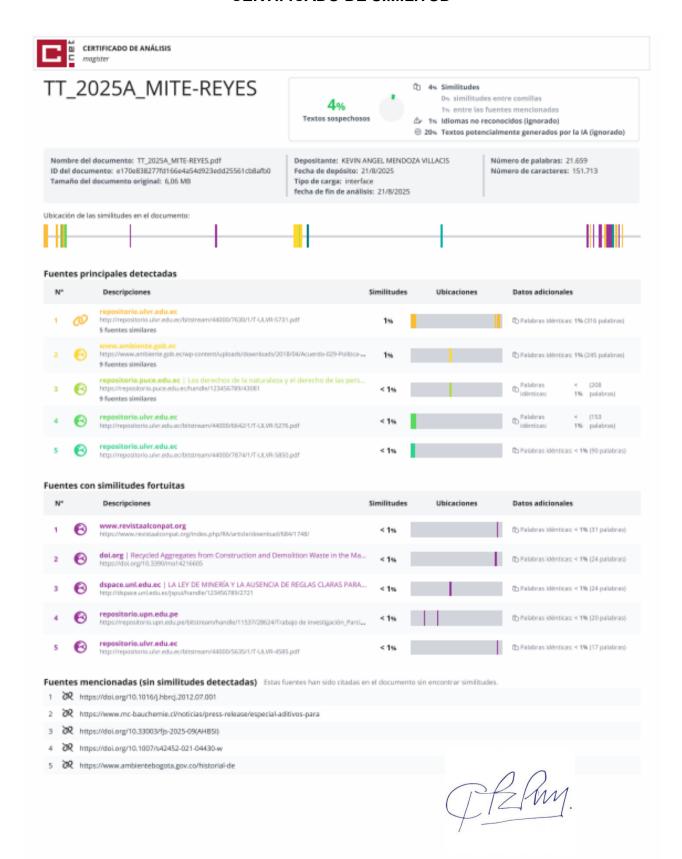
0939137790

PhD Marcial Calero Amores

Teléfono: (04) 259 6500 Ext. 241 E-mail: mcaleroa@ulvr.edu.ec

Mgtr. Jorge Enrique Torres Rodríguez **Teléfono:** (04) 2596500 **Ext.** 242 **E-mail:** etorresr@ulvr.edu.ec

dreyesr@ulvr.edu.ec


REYES RICARDO DARÍO

CONTACTO EN LA

INSTITUCIÓN:

JAVIER

CERTIFICADO DE SIMILITUD

DECLARACIÓN DE AUTORÍA Y CESIÓN DE DERECHOS PATRIMONIALES

Los estudiantes egresados RICKY MARTIN MITE BORBOR y DARIO JAVIER

REYES RICARDO, declaramos bajo juramento, que la autoría del presente Trabajo

de Titulación, Análisis comparativo de la resistencia mecánica entre concreto con

agregados reciclados de demolición y concreto tradicional, corresponde totalmente a

los suscritos y nos responsabilizamos con los criterios y opiniones científicas que en

el mismo se declaran, como producto de la investigación realizada.

De la misma forma, cedemos los derechos patrimoniales y de titularidad a la

Universidad Laica VICENTE ROCAFUERTE de Guayaquil, según lo establece la

normativa vigente.

Autor(es)

Firma:

RICKY MARTIN MITE BORBOR

C.I. 0942985912

Firma:

DARIO JAVIER REYES RICARDO

C.I. 2400010365

٧

CERTIFICACIÓN DE ACEPTACIÓN DEL DOCENTE TUTOR

En mi calidad de docente Tutor del Trabajo de Titulación "Análisis comparativo de la

resistencia mecánica entre concreto con agregados reciclados de demolición y

concreto tradicional", designado(a) por el Consejo Directivo de la Facultad de

Ingeniería Industria y Construcción de la Universidad Laica VICENTE ROCAFUERTE

de Guayaquil.

CERTIFICO:

Haber dirigido, revisado y aprobado en todas sus partes el Trabajo de Titulación,

titulado: Análisis comparativo de la resistencia mecánica entre concreto con

agregados reciclados de demolición y concreto tradicional, presentado por el (los)

estudiante (s) RICKY MARTIN MITE BORBOR Y DARIO JAVIER REYES RICARDO

como requisito previo, para optar al Título de Ingeniero civil, encontrándose apto para

su sustentación.

Firma:

Ing. CISNEROS FARIÑO RONALD PAÚL

FRAM.

C.C. 0925514960

vi

AGRADECIMIENTO

En primer lugar, agradecer a Dios, por ser mi guía, mi fortaleza y mi refugio en cada paso de este largo camino. A Él, que me ha permitido sonreír, amar y seguir adelante incluso en los momentos más difíciles. Cada prueba que llegó a mi vida la viví sabiendo que Su presencia me sostenía. Me levanté con Su fuerza, aprendí a corregir mis errores con Su sabiduría, y crecí como ser humano con Su amor. Esta victoria se la dedico completamente a Él, porque sin Su propósito, sin Su compañía, la vida simplemente no tendría sentido.

Agradezco a mi amado padre, Humberto Mite Suárez que es una persona por la cual tengo un profundo sentimiento de admiración, valoro mucho el esfuerzo y su capacidad de amar sin medida. Desde que estoy pequeño el me inculcó muchos valores como la responsabilidad, la disciplina y el respeto. Por a su ejemplo aprendí a ganarme la vida con esfuerzo, humildad y honestidad. El siempre ha estado presente a lo largo de toda mi vida, siempre me ha dado su apoyo y me impulsó a seguir adelante incluso cuando pensaba que no podía además de siempre confiar en mi incluso cuando yo dudaba de mí mismo, le estaré eternamente agradecido por cada sacrificio, consejo y ayuda.

Agradezco la enseñanza brindada por mi noble y gentil madre Maria Borbor Mite, la cual me brindó las herramientas para poder cumplir cada de una de mis metas y el apoyo constante para mis sueños; forjando a la persona que soy actualmente. Mi gratitud constante a la mujer que me brindó su colaboración, paciencia y comprensión en este largo trayecto académico; en cada una de mis etapas fue mi pilar y aliento para cada situación insostenible. Para mí siempre será el concepto de sabiduría y perseverancia, por los indudables sacrificios silenciosos dando lo mejor de sí, cada noche sin descanso y las interminables veces que estuvo para mí; siendo mi raíz, mi modelo a seguir y el obsequio del cual debo gratitud eterna a Dios, porque sin ella nada de esto sería posible.

También a Karina Mite Borbor, mi hermana, mi confidente, mi mejor amiga y el ejemplo que he admirado. Gracias por enseñarme, con tus palabras y tu vida, que nunca hay que rendirse, que incluso en la adversidad se puede avanzar con

responsabilidad y fe. Este logro también es tuyo y de esos hermosos sobrinos que me han dado la fuerza y alegría necesarias para seguir adelante.

Agradezco a mis adorados padrinos, Cecilia Tanca Campozano y Francisco Sola, de su constante acompañamiento durante este trayecto, representando su perseverancia en su amor y apoyo brindado. Le agradezco a Dios de concederme a personas ejemplares que han sido fundamentales en este proceso, formando parte de este logro; lo cual no sería posible sin cada detalle aportado siendo el cariño que siempre han demostrado.

Ricky Martin Mite Borbor

DEDICATORIA

Con el alma llena de gratitud y el corazón rebosante de emociones, dedico esta tesis a las dos primeras personas que creyeron en mí, que me alentaron cuando las fuerzas flaqueaban y que sembraron en mí las bases de lo que hoy soy. A mi adorado padrino, Francisco Sola, el hombre que me guió con disciplina, humildad, y cada valor inculcado que se transformó en las bases esenciales de mi vida.

Él me enseñó que las metas se alcanzan con sacrificio, disciplina y fe en uno mismo. Aunque hoy no se encuentre físicamente a mi lado, siento su presencia en cada logro que alcanzo. Esta tesis, más que un trabajo académico, es un homenaje a su memoria, una ofrenda sincera por todo lo que me dio, por su amor, su paciencia y su sabiduría. Padrino, lo llevo conmigo en cada paso, en cada meta cumplida, en cada sueño alcanzado. Gracias, por tanto.

.Y a mi querida madrina, Cecilia Tanca Campozano, quien ha sido un pilar inquebrantable a lo largo de mi camino universitario. Su apoyo incondicional, su amor desinteresado y su confianza absoluta han sido el impulso que me sostuvo cuando todo parecía difícil. Ha sido como una segunda madre, siempre presente, siempre firme, siempre creyendo en mí. Gracias por enseñarme con el ejemplo, por mostrarme que la superación, la humildad y la fortaleza son virtudes que dignifican a la persona. Esta tesis es suya, madrina, porque sin usted este sueño no habría sido posible. La amo profundamente, la admiro y le agradezco con el alma. Usted es y será siempre todo en mi vida. Desde lo más profundo de mi ser, este logro es también suyo.

Ricky Martin Mite Borbor

AGRADECIMIENTO

Para empezar, creo que la palabra gracias se va a quedar corto, porque el esfuerzo que han hecho mis seres queridos, fue inmenso, y por ello quiero honrarlos. Primero, empezar a dar gracias a Dios, por darme vida, para poder disfrutar y aprender cada etapa de mi vida, por dejarme experimentar cada desafío que conlleva el día.

Agradecer a mis padres, porque a pesar de todas las adversidades de la vida, me dieron todo lo que pude desear, para poder sobresalir y poder ser un profesional. sin excusas y con presiones pudieron darme una educación de calidad que se ve reflejado en mi forma de vivir la vida, gracias por creer en mí, por darme la confianza de sobresalir, y cabe resaltar que todo el esfuerzo hecho por cada uno de ellos, no será en vano. Papá y mamá, los amo con todo mi ser, espero que esa confianza siga intacta hasta su ultimo latido de su corazón. Realmente ustedes han sido mi pilar fundamental para poder lograr el objetivo de ser un profesional. Mi mami Luz (abuela materna) por criarme, cuidarme siempre, y preocuparte por mí, a pesar de cualquier circunstancia, usted siempre está ahí. Mis hermanos, gracias porque a pesar de las adversidades, confían en mí, y esa confianza me da ese impulso de ser mejor que ayer, los amo demasiado. Mis tíos y tías, de la familia Reyes y la familia Ricardo, gracias por todo, por tratarme como un hijo más, cuidarme y guiarme. Gracias por siempre darme la mano sin importar nada, siempre me dieron una ayuda que me servía mucho, gracias porque por ustedes, mi vida no ha sido tan complicada. Gracias porque por ustedes también, estoy logrando mi profesión.

La Ing. Lucrecia, persona increíble, gracias por abrirme las puertas de su laboratorio, me enseñó y aprendí mucho gracias a ella, gracias por su tiempo, y dedicación hacia mí. El laboratorio Ingeotop, empresa prestigiosa que me dio la oportunidad de trabajar ahí, gracias por la prestación de las instalaciones del laboratorio de suelos, hormigón y asfalto, para poder realizar mis ensayos acerca de mi tesis.Para terminar, a mis amigos, gracias por ese aliento y extendida de mano, siempre le doy gracias a Dios, por darme unos amigos, como los que tengo.

Darío Javier Reyes Ricardo.

DEDICATORIA

Este objetivo de mi vida se la dedico a mi mamá Dolores del Rocío Ricardo Barzola, a mi padre, Kleber Danilo Reyes Bazan, cabe mencionar que por ellos estoy cumpliendo este lindo y gratificante objetivo.

También se la dedico a mi abuela, mami Luz Alba Barzola Suarez, por criarme, y siempre estar para mí.

No podré olvidar a alguien importante en mi vida, quien en vida fue mi abuela, mami "Chavela" Fanny Isabel Bazan De la Cruz, este logro será dedicado para ti, mientras escribo estas palabras se me han salido algunas lágrimas, porque ya no estás en esta vida terrenal, siempre quise que me veas graduado, todo un profesional, pero la vida nos dio un destino diferente, sé que, en el cielo, estarías orgullosa de tu hijo. Te amo.

Para terminar, dedico este logro, a mis tíos, hermanos y amigos, personas que me quieren ver bien, personas que me extendieron una mano a pesar de las adversidades.

Darío Javier Reyes Ricardo.

RESUMEN

El trabajo de investigación aborda el siguiente tema análisis comparativo de la resistencia mecánica entre concreto con agregados reciclados de demolición y concreto tradicional, con la finalidad de concretar soluciones técnicas y ambientales al sector de la construcción en el Ecuador. La investigación surge como respuesta a la problemática asociada a la gestión inadecuada de los residuos de construcción y demolición (RCD), los cuales representan una de las principales fuentes de desechos sólidos en áreas urbanas y cuyo impacto negativo afecta tanto al medio ambiente como a la calidad de vida de la población. Se empleó un procedimiento que consistía en la creación de una base de concreto con una resistencia de 280 kg/cm², tal como lo establece la norma ACI 211. Se realizaron varios cambios en esta mezcla. El agregado reciclado sustituyó al natural en cantidades del 15 %, 25 %, 50 %, 75 % y 100 %. Las muestras adquiridas fueron analizadas en laboratorios, siguiendo las normas NTE INEN y ASTM, por medio de ensayos de compresión y tracción indirecta.

Los resultados obtenidos han indicado que en cuanto a las sustituciones que superan el 50% se observó una disminución progresiva de la resistencia, las mezclas intermedias nos presentan un desempeño medianamente satisfactorio, lo cual las ubica como una alternativa técnicamente factible. Esto nos muestra que incluir agregados reciclados a la mezcla de concreto además de que es posible también contribuye de manera eficaz para así restringir la extracción excesiva de los áridos naturales, promover la economía circular y disminuir los residuos en la industria constructora. Como conclusión, la investigación demuestra que el uso de RCD para la fabricación de hormigón de uso estructural es viable dentro del punto de vista técnico y el punto de vista medioambiental contribuyendo así de manera innovadora dentro del contexto que vive nuestro país abriendo nuevas puertas para la construcción sostenible en conjunto con los Objetivos de Desarrollo Sostenible (ODS).

Palabras claves: Hormigón, Materiales de construcción, Desarrollo sostenible, Ingeniería civil.

ABSTRACT

The research work addresses the following topic: "Comparative analysis of the mechanical resistance between concrete with recycled demolition aggregates and conventional concrete", with the purpose of providing technical and environmental solutions for the construction sector in Ecuador. The study arises as a response to the problems associated with the inadequate management of construction and demolition waste (CDW), which represent one of the main sources of solid waste in urban areas and whose negative impact affects both the environment and the population's quality of life. A procedure was employed consisting of the creation of a concrete base with a strength of 280 kg/cm², in accordance with the ACI 211 standard. Several variations of this mix were produced by replacing natural aggregate with recycled aggregate in proportions of 15 %, 25 %, 50 %, 75 %, and 100 %. The samples obtained were analyzed in laboratories following NTE INEN and ASTM standards, through compression and indirect tensile tests.

The findings indicate that, although replacements above 50 % show a gradual decrease in strength, intermediate mixtures exhibit satisfactory performance, positioning them as a feasible technical alternative. This demonstrates that incorporating recycled aggregates into concrete is not only possible, but also an effective strategy to reduce excessive extraction of natural aggregates, decrease waste generation, and promote circular economy practices within the construction industry. In conclusion, this study shows that the use of CDW in structural concrete production is technically and environmentally viable, representing an innovative contribution within the Ecuadorian context and opening new possibilities for sustainable construction, in line with the Sustainable Development Goals (SDGs) and current waste management regulations.

Keywords: Concrete, Building materials, Sustainable development, Civil engineering.

ÍNDICE GENERAL

INTRO	DUCCIÓN	1
CAPÍT	ULO I	2
1.1	Tema:	2
1.2	Planteamiento del Problema:	2
1.3	Formulación del Problema:	5
1.4	Objetivo General	5
1.5	Objetivos Específicos	5
1.6	Hipótesis	5
1.7	Línea de Investigación Institucional	5
CAPÍT	ULO II	6
2.1	Marco Teórico:	6
2.1	1.1 Elementos Metodológicos de la Tesis	6
2.1	1.2 Residuos de Construcción y Demolición	6
2.1	1.3 Hormigón	13
2.1	1.4 Componentes del Hormigón	13
2.1	1.5 Propiedades del Hormigón	15
2.1	1.6 Propiedades Mecánicas y Físicas del hormigon	16
	1.7 Métodos para la dosificación del concreto	
	1.8 Factores clave para elegir la mezcla de concreto	
	1.9 Clasificación de la Arena	
2.2	Marco Legal:	
	2.1 Constitución De La República Del Ecuador (2008)	
	2.2. ASTM	
	2.3 Normas Técnicas Ecuatorianas (NTE INEN)	
	ULO III	
3.1	Enfoque de la investigación	
3.2	Alcance de la investigación	
3.3	Técnica e instrumentos para obtener los datos	
	3.1 Extracción de agregado reciclado (RCD)	
	3.3.1.1 Trituración Manual	
	3.3.1.2 Tamizado	
;	3.3.1.3 Clasificación del RCD.	31
	3.2 Análisis Granulométrico	
3.3	3.3 Diseño de Hormigón	32

3.3.3.1 Resistencia de Diseño, Tipo de Cemento y Aditivo	35
3.3.4 Elaboración de los cilindros	36
3.3.4.1 CILINDROS.	36
3.3.4.2 CURADO ESTÁNDAR. La norma ASTM C511 establece que el curado estándar de cilindros de concreto debe realizarse en un ambiente controlado con temperatura constante de alrededor de 23 ° C y una humedad relativamente alta usualmente mayor al 95 %.	,
3.3.5 Ensayo a compresión	38
3.3.5.1 Pasos a seguir para el ensayo de compresión	39
3.3.6 Ensayos a tracción del hormigón: Ensayos indirectos	39
3.4 Población y muestra	40
3.5 Tipos de muestra aplicados en la investigación	41
CAPÍTULO IV	43
4.1 Presentación y análisis de resultados	43
4.1.1 Agregado Grueso Reciclado	43
4.1.1.1 Trituración Del Agregado Reciclado.	43
4.1.1.2 Tamizaje Del Agregado Reciclado	45
4.1.1.3 Clasificación Del RCD	47
4.1.2 Ensayo Granulométrico	48
4.1.3 Diseño de Hormigón	49
4.1.4 Dosificación para la elaboración del cilindro	50
4.1.5 Ensayo a compresión.	51
4.1.6 Ensayo a tracción indirecta (MÉTODO BRASILEÑO)	64
CONCLUSIONES	70
RECOMENDACIONES	76
REFERENCIAS BIBLIOGRÁFICAS	81
ANEVOC	00

ÍNDICE DE TABLAS

Tabla	1 Clasificación de Residuos de Construcción y Demolición (RCD)	9
Tabla	2 Clasificación de RCD	10
Tabl a	3 Gestión de los RCD según los principios de manejo ambiental	10
Tabla	4 Resultado de los ensayos a compresión	53
Tabla	5 Resultado de los ensayos a compresión -15% RCD	54
Tabla	6 Resultado de los ensayos a compresión – 25% RCD	56
Tabla	7 Resultado de los ensayos a compresión – 50% RCD	58
Tabla	8 Resultado de los ensayos a compresión – 75% RCD	60
Tabla	9 Resultado de los ensayos a compresión – 100% RCD	62
Tabla	10 Comparación de resultados del ensayo a compresión	63
Tabla	11 Resultados de ensayo a tracción indirecta (brasileño)	65
Tabla	12 Resultados de ensayo a tracción indirecta (brasileño)	66
Tabla	13 Resultados de ensayo a tracción indirecta (brasileño)	67
Tabla	14 Resultados de ensayo a tracción indirecta (brasileño)	67
Tabla	15 Resultados de ensayo a tracción indirecta (brasileño)	68
Tabla	16 Resultados de ensayo a tracción indirecta (brasileño)	68
Tabla	17 Resultados de ensavo a tracción indirecta (brasileño)	69

ÍNDICE DE FIGURAS

Figura	1 Trituración del agregado reciclado	43
Figura	2 Trituración del agregado reciclado	44
Figura	3 Trituración del agregado reciclado	44
Figura	4 Tamizaje del agregado reciclado	46
Figura	5 Tamizaje del agregado reciclado	46
Figura	6 Tamizaje del agregado reciclado	46
Figura	7 Tamizaje del agregado reciclado	47
Figura	8 Tamizaje del agregado reciclado	48
Figura	9 Obtención de datos del cilindro	52
Figura	10 Colocación de cilindros en la prensa hidráulica	52
Figura	11 Rotura de cilindro	53
Figura	12 Curva de la resistencia según el curado	54
Figura	13 Curva de la resistencia según el curado	55
Figura	14 Obtención de datos del cilindro	55
Figura	15 Colocación de cilindros en la prensa hidráulica	56
Figura	16 Curva de la resistencia según el curado	57
Figura	17 Obtención de datos del cilindro	57
Figura	18 Colocación de cilindros en la prensa hidráulica	58
Figura	19 Curva de la resistencia según el curado	59
Figura	20 Obtención de datos del cilindro	59
Figura	21 Colocación de cilindros en la prensa hidráulica	60
Figura	22 Curva de la resistencia según el curado	61
Figura	23 Obtención de datos del cilindro	61
Figura	24 Obtención de datos del cilindro	62
Figura	25 Colocación de cilindros en la prensa hidráulica	63
Figura	26 Comparación de resultados del ensayo a compresión	64
Figura	27 Rotura de cilindros-Ensayo a tracción indirecta	65
Figura	28 Rotura de cilindros-Ensayo a tracción indirecta	66
Figura	29 Rotura de cilindros-Ensayo a tracción indirecta	69

INDICE DE ANEXOS

Anexo 1	Trituración	88
Anexo 2	RCD	89
Anexo 3	Tamizaje	89
Anexo 4	Granulometría de los agregados	90
Anexo 5	Granulometría de los agregados	90
Anexo 6	Informe del ensayo Granulométrico del Agregado Fino	91
Anexo 7	Informe del ensayo granulométrico del Agregado grueso	92
Anexo 8	RCD	93
Anexo 9	Granulometría de los agregados	93
Anexo 1	Informe de la granulometría del RCD	94
Anexo 1	1 Informe del diseño del hormigón	95
Anexo 1	2 Informe del diseño del hormigón (parte siguiente)	96
Anexo 1	3 Informe de la dosificación de agregados Tipo tradicional	97
Anexo 1	4 Informe de la dosificación de agregados Tipo 15% RCD	98
Anexo 1	5 Informe de la dosificación de agregados - Tipo 25% RCD	99
Anexo 1	6 Informe de la dosificación de agregados - Tipo 50% RCD	100
Anexo 1	7 Informe de la dosificación de agregados - Tipo 75% RCD 1	101
Anexo 1	8 Informe de la dosificación de agregados - Tipo 100% RCD 1	102
Anexo 1	9 Elaboración de cilindros	103
Anexo 2	0 Mezcla de los agregados 1	103
Anexo 2	1 Aditivo que se utilizó para la ejecución del hormigón 1	104
Anexo 2	2 Mezcla del material para el hormigón1	104
Anexo 2	3 Colocación de hormigón a los respectivos cilindros, en 3 capas 1	105
Anexo 2	4 La varilladas al momento de colocar las capas de hormigón 1	105
Anexo 2	5 Terminación de la elaboración de los cilindros	106
Anexo 2	6 Desencofrar	106
Anexo 2	7 Limpieza de cilindros1	107
Anexo 2	8 Colocar los cilindros en la piscina1	107
Anexo 2	9 Ensayo a compresión tradicional1	108
Anexo 3	0 Ensayo a compresión - 15%1	109
Anexo 3	1 Ensayo a compresión - 25% 1	110

Anexo	32 Ensayo a compresión - 50%	111
Anexo	33 Ensayo a compresión - 75%	112
Anexo	34 Ensayo a compresión - 100%	113
Anexo	35 Ensayo a tracción indirecta (método brasileño)	114
Anexo	36 Ensayo a tracción indirecta (método brasileño) - 15%	115
Anexo	37 Ensayo a tracción indirecta (método brasileño) - 25%	116
Anexo	38 Ensayo a tracción indirecta (método brasileño) - 50%	117
Anexo	39 Ensayo a tracción indirecta (método brasileño) - 75%	118
Anexo	40 Ensayo a tracción indirecta (método brasileño) - 100%	119
Anexo	41 Certificado de laboratorio.	120
Anexo	42 Certificado de calibración	121
Anexo	43 Certificado de calibración	122
Anexo	44 Certificado de calibración	123
Anexo	45 Certificado de calibración	124
Anexo	46 Certificado de calibración	125
Anexo	47 Certificado de calibración	126

INTRODUCCIÓN

El presente trabajo de titulación aborda la problemática ambiental generada por el manejo inadecuado de los residuos de construcción y demolición (RCD), cuyo volumen ha incrementado en los últimos años debido al crecimiento acelerado del sector de la construcción. En el contexto local, la disposición final de estos residuos suele realizarse en botaderos o rellenos sin tratamiento previo, ocasionando impactos negativos como la degradación del paisaje, la ocupación innecesaria de áreas y el desaprovechamiento de materiales que pueden ser reutilizados.

El siguiente estudio es desarrollado con el fin de evaluar la viabilidad técnica posible incorporando agregados gruesos reciclados, los cuales fueron obtenidos de RCD como reemplazo parcial y total de los agregados naturales en la producción del hormigón estructural. Realizamos el estudio conjunto con un laboratorio especializado, en el cual se aplicó un diseño a la mezcla buscando tener como objetivo la resistencia de 280 kg/cm². Consideramos como porcentajes de reemplazo el 15%, 25%, 50%, 75% y 100% respectivamente. Además, utilizamos una mezcla patrón como referencia en nuestro estudio.

La importancia de este trabajo recae en que contribución podemos tener en el impulso de prácticas sostenibles constructivas, así fomentamos la economía circular con el fin de reducir la extracción de los áridos del medio ambiente. Acorde con la estructura del trabajo presentamos la siguiente estructura, capitulo 1 en el cual se presenta tanto el planteamiento del problema, la justificación de problema y los objetivos tanto principal como específicos. Capítulo 2 en el cual se desarrolla el marco teórico, donde se incluyen conceptos tanto del hormigón, RCD, agregados y de las normativas aplicables a este estudio respectivamente. Capítulo 3 en el cual se describe la metodología, abarcando esta las características de los materiales a utilizar, el diseño de las mezclas a utilizar y la fabricación de las probetas sujetas a ensayos. Capítulo 4 en el cual se exponen los resultados obtenidos con cada uno de los porcentajes reemplazados además de su respectivo análisis. Por último, presentamos los anexos los cuales contienen la información complementaria, registros fotográficos y datos técnicos los cuales avalan nuestro proyecto.

CAPÍTULO I ENFOQUE DE LA PROPUESTA

1.1 Tema:

Análisis comparativo de la resistencia mecánica entre concreto con agregados reciclados de demolición y concreto tradicional

1.2 Planteamiento del Problema:

La gestión de residuos industriales, incluidos los de construcción y demolición, constituye un desafío ambiental global que requiere atención inmediata debido a su volumen y variedad de materiales.

Los desperdicios derivados de la demolición y construcción son principalmente materiales los cuales fueron formados para el hormigón, estos constituyen una porción fuerte del total de los residuos que son producidos a escala global. Cuando la administración de estos no es a adecuada, en pocas palabras, cuando se opta por la vía fácil la cual es tirar a los vertederos los restos o no se establecen procesos seguros y eficientes para su reciclaje y reutilización se llegan a producir efectos los cuales son perjudiciales para el medioambiente y para la salud e las personas. Acorde a Bastidas Martínez et al. (2021), esta situación establece y realza la importante necesidad de la implementación de estrategias sustentables para la gestión de los respectivos desechos.

Como la norma ASTM C39, NTE INEN 1573, y los lineamientos del Instituto Ecuatoriano del Cemento y Concreto es necesaria para el control de calidad en proyectos de construcción. Para determinar su resistencia a la compresión o tracción por flexión, esta normativa estipula que se deben desarrollar al menos dos ensayos a partir de una sola muestra de hormigón, la cual deberá ser ensayada a los 28 días o de acuerdo a una edad específica. Aunque es necesario para Para asegurar la calidad del material, este proceso produce una cantidad importante de desperdicio de hormigón. cantidad de desperdicio de hormigón.

En muchas partes del mundo, existe conversión de estos desechos en materias primas para la producción de materias nuevos materiales para la producción de nuevos materiales ha sido impulsada por la creciente contaminación ambiental y la falta de espacios adecuados para la disposición de residuos de construcción y demolición. ha sido motivada por la creciente contaminación ambiental y la falta de espacios adecuados para la disposición de residuos de construcción y demolición. Esta práctica ayuda al desarrollo desde la construcción más responsable y sostenible con el medio ambiente.

De manera mundial, existe un congreso creciente debido a la necesidad de la reducción drástica para la generación de estos residuos sólidos para el año 2030, esto ha llevado a un sin número de países a tomar la iniciativa de implementación de programas orientados a mejorar su sistema de aprovechamiento de residuos para innovar así en su desempeño ambiental, lo cual se evidencia en diversos planes e investigaciones. La gestión de dichos residuos es una prioridad o se ha convertido en una prioridad latente en las agendas ambientales a nivel global. No obstante, Ecuador actualmente se encuentra rezagado, por el momento está sin metas concretas ni avances significativos los cuales demuestran su falta de acción la cual es alarmante ya que si continua esta tendencia de generación descontrolada de residuos se podría presentar un punto de no retorno con consecuencias potencialmente irreversibles.

Los residuos de demolición, también conocidos como RCD, ofrecen actividades que incluyen excavaciones, nuevas construcciones, remodelaciones, reparaciones, rehabilitación e incluso trabajos domésticos de menor nivel. Estos residuos naturales ocurriendo constituyen uno de los principales desafíos medioambientales a los que se enfrenta la industria de la construcción. Los residuos son uno de los principales desafíos ambientales que enfrenta la industria de la construcción.

Una cantidad significativa; aumento desde escombros y desechos se producen por el alto consumo de materias primas que tiene esta industria para la producción de materiales y consumibles. Los escombros y desechos son producidos por el alto consumo de materias primas de esta industria para la producción de materiales y consumibles. Como resultado, los RCD representan entre el 35 y el 40 % de todos los

residuos desechados en todo el mundo, muchos de los cuales terminan en vertederos ilegales o sitios de disposición final que no cumplen con los estándares de gestión adecuados.

De acuerdo con Velásquez et al. (2024), esta situación evidencia la necesidad urgente de implementar estrategias de gestión eficiente que reduzcan el impacto ambiental generado por los RDC. Dentro de los materiales más comunes utilizados en la industria de la construcción en los tiempos actuales está el hormigón, donde su producción alcanza niveles globalizados asombrosos. Este número no solo nos muestra su dominio y alcance dentro de esta industria, sino que dobla en volumen de cualquier material en la construcción combinados. Anualmente hay una estimación de producción de 25 millones de toneladas de carbono, traduciéndose esto en un consumo por persona de 3.8 toneladas alrededor del mundo.

De acuerdo con Silupu et al. (2020), los datos nos demuestran el alcance del efecto ambiental el cual es vinculado al uso excesivo de hormigón como a la gestión inadecuada de los residuos resultantes. En distintos términos, el hormigón es un compuesto esencial dentro de la industria de la construcción, en tanto la producción del mismo tiene un impacto significativo en el medio ambiente. La producción de este libera inmensas cantidades de CO2, el cual es un gas que tiene un efecto nocivo en el ambiente.

La extracción de los siguientes materiales como la grava, la piedra o la arena puede tener efectos nocivos para el medio ambiente. Los residuos de demolición presentan un reto significativo en términos de gestión, recolección y reciclaje. Para la reducción del impacto ambiental de la construcción, es esencial el desarrollo de nuevas estrategias las cuales incentivan la reutilización de materiales y la adopción de prácticas más sostenibles en la construcción. El objeto del presente proceso es zarandear y moler el concreto previamente usado para producir agregados que puedan utilizarse en nuevas mezclas.

De acuerdo con Davila Pablo et al. (2024), si queremos mitigar los efectos nocivos de dichos materiales reciclados debemos utilizar aditivos químicos.

Garantizando así su trabajabilidad y permitiendo optimizar su consistencia, lo cual facilita su utilización en los proyectos contemporáneos.

1.3 Formulación del Problema:

¿Cómo varía la resistencia en función del hormigon empleando residuos de construcción y demolición en comparación con un hormigón tradicional?

1.4 Objetivo General

Evaluar la resistencia mecánica de un concreto con agregados reciclados de construcción y demolición en comparación con un concreto tradicional

1.5 Objetivos Específicos

- Caracterizar las propiedades físicas de los agregados reciclados mediante ensayos de laboratorio.
- Determinar las proporciones de la mezcla de concreto con agregado reciclado mediante metodologías de diseño.
- Calcular la resistencia mecánica del concreto con agregado reciclado y convencional mediante ensayos de compresión y flexión.

1.6 Hipótesis

El Concreto hecho con agregados reciclados de (RCD) tiene la resistencia similar al concreto tradicional, lo que lo hace una opción viable y sostenible para ser utilizado en la construcción de estructuras en Ecuador

1.7 Línea de Investigación Institucional.

Territorio, medio ambiente y materiales innovadores para la construcción.

CAPÍTULO II MARCO REFERENCIAL

2.1 Marco Teórico:

2.1.1 Elementos Metodológicos de la Tesis

Se investiga cómo varía la resistencia del hormigón al utilizar residuos de construcción y demolición frente a un hormigón tradicional. El objetivo es comparar la resistencia mecánica entre ambos tipos. Para ello, se diseña una mezcla patrón con f 'c = 280 kg/cm² y se analiza la resistencia al reemplazar el 50%, 75 % y 95 % del agregado grueso natural por los agregados mencionados como es el reciclado, evaluando sus propiedades físico-mecánicas.

2.1.2 Residuos de Construcción y Demolición

El rápido crecimiento de las ciudades actuales ha tenido un notable incremento en la generación de residuos en el campo de la demolición y construcción, convirtiendo así a estos en una de las fuentes más abundantes y problemáticas de desechos en los entornos urbanos. La acumulación no solo representa una amenaza latente para el entorno medioambiental sino también para el paisaje urbano, esto plantea desafíos en cuanto a su correcta disposición y posible aprovechamiento. Por esta situación, debe ser fundamental identificar estrategias que permitan transformar estos residuos en recursos útiles y sostenibles dentro de la propia industria.

En un estudio realizado por Beltrán Montoya & Chica Osorio (2018), realizaron una caracterización detallada de los residuos de construcción y demolición generados en Medellín, Colombia, con el fin de evaluar su potencial de reúso. Los resultados demostraron que estos materiales poseen propiedades físicas y químicas que los hacen aptos para ser incorporados en nuevas soluciones constructivas, como placas suelo- cemento, donde fue posible reutilizar hasta un 95% del RCD procesado, lo que evidencia una alternativa viable desde el punto de vista técnico y ambiental.

La expansión del sector de la construcción, aunque esencial para el desarrollo urbano, ha traído consigo un aumento significativo en la generación de residuos. Estos desechos, conocidos como (RCD), representan uno de los principales desafíos en materia de gestión ambiental en las ciudades.

Los impactos ambientales y sociales nos muestran evidencia de la urgencia grave de tener una implementación de un sistema de gestión y recolección de residuos de manera integral dentro de la industria constructiva y demoledora (RCD), esto no solo contemplaría lo que es la recolección sino también una disposición correcta para la clasificación de los mismos asegurando así su reutilización y promoción de los materiales dentro del sector procurando que sean sostenibles.

Una investigación realizada por Contreras et al. (2021), enfocada en la fabricación de elementos urbanos prefabricados (como bordillos y adoquines) a partir de agregados reciclados extraídos de RCD demostró que, aunque aumentan la absorción de agua y reducen ligeramente la densidad y resistencia a comprensión, todos los productos obtenidos cumplieron con los estándares europeos, y en algunos casos incluso mostraron valores superiores de resistencia tracción que los materiales tradicionales.

En el ámbito público el fortalecimiento de políticas, tales como la participación municipal, de empresas tanto constructoras como contratistas y la participación ciudadana activa es fundamental para reducir y eliminar los efectos nocivos asociados o causados por estos residuos y así avanzar hacia un futuro de desarrollo más responsable y equilibrado.

2.1.2.1 Clasificación de Residuos de Construcción y Demolición. La presente clasificación de estos residuos de demolición y construcción (RCD) es un avance importante dentro de lo que es su gestión y aprovechamiento. Al momento de la separación de residuos según el origen (excavación, construcción y demolición) o por su naturaleza (inertes, los cuales no son peligrosos), facilitando así su tratamiento en cada tipo de material. Dicha separación nos permite la maximización de recursos recuperables en cada tipo de material además de la minimización de los impactos

negativos en el medio ambiente al mismo tiempo que nos apertura espacios dentro de las estrategias de reciclaje y la reutilización de los residuos.

Siguiendo los lineamientos de Gestión del amianto (GDA, s.f), los residuos constructivos de demolición inicialmente se clasifican de acorde a su procedencia: excavación, construcción, demolición y luego por la naturaleza en 3 categorías: inertes, los cuales son aptos para su reutilización sin riesgo ambiental; no peligrosos, los cuales requieren un manejo de manera controlada; y por ultimo los peligrosos, estos demandan tratamiento muy especializado para prevenir severos daños a la salud y el entorno. La correcta clasificación según su origen nos lleva a una base de gestión eficiente y segura de los residuos.

De acuerdo con las directrices de Francesca (2024), dentro de la construcción el ecodiseño abarca una estrategia innovadora que favorece la clasificación y valoración futura de los residuos los cual permite una desconstrucción de manera planificada. Esta emplea materiales altamente adecuados y técnicas especificas del área constructiva lo cual facilita la separación en sitio de los componentes al final de la vida útil de la construcción promoviendo así su reutilización y reciclaje. En el presente contexto, la desconstrucción presenta una alternativa mucho más sostenible y ordenada respecto a la demolición tradicional, la cual tiende a mezclar los residuos y así dificultar su libre aprovechamiento.

Actualmente, muchas empresas optan por las demoliciones de manera controlada utilizando un método de fases, con la finalidad de recuperar de manera eficaz los materiales potencialmente aprovechables y reduciendo así el impacto medioambiental de esta práctica.

Estos residuos se caracterizan por su diversidad, ya que provienen de una amplia variedad de materiales utilizados en las obras civiles.

Entre los principales se encuentran:

Tabla 1

Clasificación de Residuos de Construcción y Demolición

Tipo de residuo	Descripción
Hormigón	Restos de estructuras, elementos prefabricados o pavimentos.
Ladrillos	Ladrillos cerámicos, refractarios y similares usados en construcción.
Materiales pétreos	Piedra natural, grava, arena, usados en rellenos y estructuras.
Cerámica	Baldosas, azulejos, piezas sanitarias, etc.
Madera	Residuos de carpintería, estructuras, encofrados y embalajes.
Vidrio	Ventanas, espejos, botellas y fragmentos de vidrio.
Plástico	Tuberías, láminas, empaques y otros derivados sintéticos
Asfalto	Residuos de pavimentos, impermeabilizaciones y capas de rodadura.
Tierras y áridos	Materiales resultan de excavaciones, nivelaciones o limpieza de terrenos.

Fuente: Francesca (2024)

Tabla 2

Los RCD de acuerdo a la función de su peligrosidad y su origen

Clasificación de RCD	Descripción y ejemplos
Residuos inertes	No experimentan transformaciones
	significativas físicas, químicas o
	biológicas. Ejemplos: hormigón,
	ladrillos, materiales pétreos, cerámica.
Residuos no peligrosos	Pueden contener sustancias
	peligrosas en cantidades bajas.
	Ejemplos: madera, metales, vidrio,
	plásticos.
Residuos peligrosos	Contienen sustancias que pueden
	causar daños a la salud o al medio
	ambiente. Ejemplos: amianto,
	pinturas, disolventes, aceites.

Fuente: Francesca (2024)

Tabla 3

Gestión de los RCD según los principios de manejo ambiental

Principio de Gestión	Descripción
Prevención	Reducir la generación de RCD en origen.
Reutilización	Dar una nueva vida a los materiales y elementos de construcción.
Reciclaje	Transformar los RCD en nuevos materiales o productos.

Fuente: Francesca (2024)

Dentro de la presente situación se han presentado e innovado nuevos materiales y técnicas constructivas las cuales exigen un entendimiento profundo de las propiedades. Siguiendo el ejemplo de Julián et al. (2013), los cuales realizaron diversos estudios experimentales para lograr la caracterización del comportamiento mecánico de los diferentes tipos de hormigón, donde se propone un diseño favoreciendo el uso eficiente.

Lo que conlleva el desempeño del concreto depende en mayor medida de los materiales cementantes que fueron utilizados. En el caso del cemento portland, el cual forma un gel amorfo de silicato de calcio hidratado (CSH), este compuesto por fases las cuales son la tobermorita y jenita. En diferencia a los materiales alcalinamente activados los cuales desarrollan geles distintos según su precursor (CASH), en cuanto para las cenizas volantes y meta caolín (NASH) o de potasio (KASH), dependiendo del valor activador tenemos escorias de alto horno. Según Pardo et al. (2023), estos compuestos son determinados según la resistencia y durabilidad que presenten como material.

En cuanto a la metodología aplicable en ciertos estudios recientes han demostrado ser muy importantes en torno a la evaluación de la durabilidad y eficiencia del concreto armado en diversas condiciones ambientales adversas. Según Barrera & Mora (2024), los presentes avances nos permiten cultivar y adaptar normativas para diseños estructurales en particularidades geográficas características en cada región.

En el campo de los concretos con adiciones, Cáceres & González (2024), elaboraron mezclas con ceniza de cascara de maní, destacando que la calidad de sus componentes (cemento, agregados, agua y aditivos), los cuales deben cumplir estándares técnicos rigurosos.

Por su parte, Tenesaca & Flores (2023), resaltan el auge del uso de materiales reciclados, promoviendo mezclas innovadoras adaptadas a diversas necesidades del mercado, en línea con los objetivos de sostenibilidad ambiental.

Según los lineamientos de Lara & Mejía (2022) enfatizan que para la protección del medio ambiente se debe realizar de manera equitativa, así no alteramos su equilibrio.

La inadecuada gestión de residuos en obras inmobiliarias, ha generado acumulaciones significativas, aumentando los costos de ejecución y afectando negativamente el entorno natural. Por ello, se propone mejorar la calidad de los materiales y reutilizarlos eficientemente, contribuyendo así a la sostenibilidad. (Salcedo, 2020).

De acuerdo con el estudio presentado por Hormigón Reciclado (2023), al término de la vida útil del concreto este puede ser reciclado mediante la técnica de trituración y separación de impurezas, obteniendo así las granulometrías aptas para los usos innovadores como rellenos o bases estructurales. El proceso reduce significativamente el consumo de recursos naturales y la generación de residuos, manteniendo así una calidad de la estructura aceptable y con esto teniendo generados ahorros económicos.

Sin embargo, diferentes estudios nos han presentado que al momento e emplear un 50% o un porcentaje superior de árido reciclado en la elaboración del concreto, este suele demostrar niveles inferiores de resistencia y durabilidad en contraste a al hormigón convencional. La disminución en la resistencia mecánica es asociada principalmente a la porosidad elevada y reducida de la adherencia del agregado reciclado, lo cual compromete la cohesión interna de la mezcla. En medida para contrarrestar las presentes limitaciones se ha sugerido por Pavón et al. (2011), las modificaciones en la dosificación, con el incremento del cemento y la reducción de la relación agua-cemento lo cual favorece la captación y a la densidad del concreto.

Por último, el hormigón tradicional sigue siendo una de las opciones bastante utilizadas dentro del sector constructivo por su desempeño mecánico aceptable, facilidad en la aplicación y su bajo costo. Este hormigón se utiliza de manera amplia en diversas obras tales como viviendas, aceras, losas y edificaciones de varios niveles (5) los cuales requieren altos niveles de cargo en su estructura. Dentro del presente contexto la inclusión de los agregados como la grava andesita la cual resulta

especialmente eficaz en su uso para el logro de mezclas funcionales que se adaptan a requerimientos básicos. De acuerdo con De La Cruz (2024), señala que en trabajos de baja exigencia estructural el hormigón tradicional con agregados naturales sigue manteniéndose como una de las opciones más eficiente y económicamente viables.

2.1.3 Hormigón

Según Chávez & Burgos (2022), el hormigón es una mezcla compuesta por cemento, agua, grava, arena y aditivos, en la que cada elemento una función específica que influye directamente en la calidad del producto final. Aunque el cemento representa aproximadamente el 15% del volumen total, desempeña un papel esencial al actuar como aglutinante, garantizando la cohesión y resistencia de la mezcla. Por su parte, los aditivos permiten optimizar sus propiedades al reducir la cantidad de agua requerida sin afectar la consistencia, lo que incrementa la densidad y mejora el desempeño mecánico. Además, estos aditivos mejoran la trabajabilidad del hormigón, facilitando su colocación y adaptabilidad a diferentes condiciones constructivas. En conjunto, estos componentes permiten obtener un hormigón de alto rendimiento, apto para una amplia variedad de aplicaciones estructurales.

2.1.4 Componentes del Hormigón.

Cemento

De acuerdo con Alisi et al. (2025), el cemento es un agregado fundamental dentro de la composición del hormigón. Este actúa como un aglutinante hidráulico que, al momento de tener contacto con el agua, arena y la grava forma una masa la cual a medida que seca se endurece tomando una gran resistencia y durabilidad. Este material no solo se obtiene a partir de materias primas como la arcilla, el esquito o la caliza las cuales se someten a procesos de calcinamiento y molienda para la generación de Clinker, siendo esta una sustancia enriquecida en óxidos como el CaO, Al2O3, Fe2O3 y SiO2. Indicando así que la química del cemento determina las propiedades mecánicas del concreto tales como el comportamiento frente a la durabilidad y porosidad. Destacando así los procesos de hidratación esenciales en la mejora del diseño de las mezclas en el contexto de la sostenibilidad y la alta eficiencia.

Agua de mezclado

Siguiendo los lineamientos propuestos por Osorio (2022), el agua a utilizar en el hormigón debe cumplir una función esencial para iniciar el proceso de hidratación, la cual permite la activación de las reacciones químicas que permiten el fraguado y el endurecimiento. La cantidad considerablemente adecuada de agua es determinante al momento del análisis de la trabajabilidad del hormigón en estado fresco, facilitando así su colocación, acabado y captación sin verse comprometida la resistencia final.

Agregados

Según HOLCIM (s. f.), Los agregados pétreos se clasifican de acuerdo con su origen y el tratamiento que reciben antes de ser utilizados. Los agregados naturales provienen directamente de fuentes como ríos o canteras, y tras un ajuste en tamaño y granulométrica, se acondicionan para cumplir con los requerimientos técnicos de su aplicación. Estos materiales son ampliamente empleados en la construcción por su fácil acceso y procesamiento. En contraste, los agregados triturados se obtienen mediante la fragmentación mecánica de rocas o del aprovechamiento de materiales descartados durante el procesamiento de agregados naturales. Este tipo de agregado ofrece mayor uniformidad en sus propiedades físicas, lo que contribuye a mejorar la resistencia y durabilidad del concreto.

Aditivo

Siguiendo lo marcado por Kaladharan & Rajabipour (2023), los aditivos con propiedades químicas son sustancias que pueden ser añadidas al hormigón, dependiendo que sus proporciones generalmente se encuentren en un rango inferior al 5% del peso propio del cemento, esto con el propósito de modificar las propiedades claves, estas son: la durabilidad, la resistencia mecánica, la trabajabilidad y el fraguado. En cierto estudio se investigó una serie de sales de calcio y magnesio diseñadas para tener un efecto que contrarresta la reacción álcali-sílice (ASR), logrando así una reducción en el pH dando una solución por al del hormigón sin ver afectada de manera negativa su resistencia o la manejabilidad de la mezcla.

Como se estipula en el artículo Aditivos para hormigón (2023), este describe como ciertos aditivos inhibidores de reacciones químicas adversas, en tanto que otros han sido diseñados con el fin de mejorar la fluidez o acelerar el desarrollo de la resistencia inicial del hormigón. Los hallazgos respectivos indicaron que si se seleccionan y dosifican adecuadamente los compuestos estos pueden aumentar la durabilidad del hormigón sin comprometer la resistencia última del hormigón.

2.1.5 Propiedades del Hormigón

Un análisis académico reciente resalta la importancia de comprender las propiedades del hormigón en estado fresco, para asegurar su desempeño estructural y durabilidad. Según Nagaraj & Girish (2021), en Reología del hormigón fresco: una revisión, la calidad del hormigón fresco afecta directamente su resistencia y durabilidad, y aunque tradicionalmente se ha medido mediante pruebas empíricas como la prueba de caída, recientemente se reconoce la necesidad de una aproximación más científica centrada en variables reológicas, como el límite elástico y la viscosidad plástica

Las principales propiedades del hormigón fresco son:

Consistencia

Según Elaty & Ghazy (2012), Se refiere a la capacidad de la mezcla para deformarse sin perder cohesión, medida mediante la prueba de caída o pruebas como el flujo de asentamiento. Se considera un indicador directo del nivel de trabajabilidad de la mezcla.

Trabajabilidad

Según la página de Trabajabilidad del Concreto (2020), implica facilidad de transporte, colocación, compactación y acabado. Está fluida por la relación agua/cemento, la granulometría de los agregados, la presencia de aditivos y las propiedades reológicas del aglomerante.

Homogeneidad y cohesión

Desde la posición de Chidiac & Maadani (2000), Refieren a la distribución uniforme de los componentes y la capacidad de evitar la segregación o el sangrado. Se relaciona con la viscosidad plástica y la tensión cortante, evaluados mediante modelos reológicos modernos.

Densidad

En base al concepto de Amakye et al. (2021), Representa la relación entre la masa del hormigón fresco compactado y su volumen, reflejando la eficacia del método de compactación y la presencia de vacíos.

Tiempo abierto

Es el intervalo entre el amasado y el inicio del fraguado del hormigón, establece el margen disponible para manipular la mezcla antes de que comience en endurecimiento, incluyendo en la calidad final (Elfakhrany et al., 2024).

2.1.6 Propiedades Mecánicas y Físicas del hormigon

Las propiedades del hormigón pueden dividirse en dos grandes categorías: físicas y mecánicas. Mientras las propiedades mecánicas están relacionadas con la resistencia estructural del material, las propiedades físicas definen características como densidad, absorción y porosidad, que influyen en su durabilidad y comportamiento frente al tiempo y agentes externos.

Propiedades mecánicas

Un estudio científico realizado por Fernandez et al. (2022), analiza el efecto del uso de residuos de caucho de neumático (RCN) como reemplazo parcial del agregado fino del hormigón. Los resultados muestran una disminución en la resistencia a compresión, tracción y flexión conforme aumenta el porcentaje de RCN, con

excepción del 5%, donde la resistencia se mantiene similar al hormigón con arena natural. Esto confirma la relación directa entre composición y resistencia del material.

Otro ejemplo relevante corresponde a Espín & Obando (2024), quienes compararon el uso de ripio triturado a zarandeado en hormigón con resistencia de diseño de 28MPa. Los resultados sugieren que ambos tipos de agregado pueden proporcionar rendimientos mecánicos similares, lo que es relevante para reducir costos sin comprometer la calidad estructural.

Propiedades físicas

El trabajo de Salinas et al. (2023), ofrece un análisis profundo de las propiedades físicas del hormigón fresco, incluyendo densidad, porosidad, relación agua-cemento y su impacto en la resistencia final. Su investigación concluye que la densidad adecuada del concreto fresco (aproximadamente 2,607 kg/dm3 con relación agua-cemento de 0,6) se correlaciona con mejor cohesión interna, menor porosidad y mayor desempeño estructural.

2.1.7 Métodos para la dosificación del concreto

La dosificación del concreto es un procedimiento crítico para garantizar que la mezcla final cumpla con los requisitos de desempeño estructural y durabilidad. Existen múltiples enfoques, que van desde métodos empíricos tradicionales hasta técnicas basadas en resistencia específicas o características de los materiales utilizados.

Un estudio sobre dosificación del concreto Consuegra & García (2022), demostraron que la corrección del contenido de humedad del agregado, sumada a un control riguroso del agua del mezclado, permitió alcanzar la resistencia requerida sin necesidad de incrementar cemento de forma innecesaria. Su enfoque experimental evidencia como el ajuste de parámetros físicos (humedad, relación agua/cemento) es determinante en el éxito de cualquier método de dosificación.

El Instituto del cemento y del hormigón (ICH) describe el método del Faury como una técnica avanzada de dosificación del concreto, basada en criterios granulométricos. Este método considera factores como el efecto de pared y la fluidez óptima del material granular, lo cual permite establecer tamaños máximos de agregado y una distribución granulométrica adecuada. Su aplicación contribuye significativamente a mejorar propiedades esenciales del concreto como la densidad, la trabajabilidad y la resistencia (Dosificación de Hormigones, s. f.).

Dosificación por volumen: Este método es uno de los más tradicionales, empleados principalmente en obras pequeñas o en contextos donde no se requiere un alto nivel de precisión. Se basa en medir los componentes del concreto (cemento, agua, agregado fino y grueso) mediante volúmenes estandarizados como valdes o cubetas. Sin embargo, su precisión puede verse afectada por variaciones en la densidad de los materiales y de la humedad, lo que puede resultar en mezclas inconsistentes especialmente cuando los materiales no están completamente secos (Pérez, 2023).

Dosificación por peso: Es el método más utilizado en la construcción moderna y en la fabricación de concreto premezclado. Se basa en pesar cada componente antes de mezclarlo.

En comparación con la dosificación por volumen, proporciona mayor precisión y uniformidad en la mezcla, aunque requiere el uso de balanzas precisas y equipos especializados en el sitio o en la planta de concreto.

Dosificación por resistencia: Este método se enfoca en obtener una mezcla de concreto que cumpla con un nivel específico de resistencia a la compresión, definido en términos de carga por centímetro cuadrado. Se basa en controlar la relación agua-cemento y en el uso de aditivos para mejorar el rendimiento.

Requiere un conocimiento técnico avanzado sobre los materiales y su interacción, así como ensayos y ajustes continuos para lograr la resistencia deseada.

2.1.8 Factores clave para elegir la mezcla de concreto

Según POYATOS (2025), la elección de una mezcla de concreto adecuada depende de varios factores clave que influyen en su rendimiento y su durabilidad. Entre estos se destacan los siguientes:

- Resistencia a la compresión: Depende de la relación agua-cemento, el tiempo de curado y la temperatura, influyendo directamente en la durabilidad del concreto.
- Trabajabilidad: Es crucial para la colocación y compactación, especialmente en áreas estrechas o de difícil acceso. Se mide mediante pruebas de asentamiento para asegurar su manejabilidad.
- Durabilidad: La resistencia a factores ambientales garantiza estructuras duraderas. Una relación agua-cemento alta puede reducir la vida útil del concreto.
- Control de calidad: Las pruebas en obra permiten verificar la calidad de la mezcla y su resistencia, siendo esenciales para evitar problemas por manejo o curado inadecuados.
- Agregados: La proporción y calidad de los agregados gruesos y finos determinan la densidad y resistencia del concreto. La mezcla adecuada asegura una granulometría uniforme y una mejor trabajabilidad.

2.1.9 Clasificación de la Arena

La arena constituye el agregado fino más importante del hormigón, representando entre el 60% y 70% del peso total de la mezcla y ejerciendo una influencia determinante sobre su trabajabilidad, cohesión y propiedades fisiomecánicas. Un estudio reciente de Navarrete et al. (2023), destacan que la calidad de la arena, incluida su granulometría, pureza y origen, impacta directamente en la resistencia, durabilidad y desempeño del concreto.

Según Sacosa (2023), las arenas se clasifica principalmente en tres tipos, cada una con características específicas y aplicaciones determinadas:

- Arena fina (natural): Arena sin tratamiento industrial, ideal para trabajos de albañilería y mezclas donde se busca buena manejabilidad sin necesidad de exceso de pasta.
- Arena de río: Extraía directamente de recursos hídricos, esta arena presenta granos redondeados y es adecuada para hormigones estructurales por su buen desempeño en resistencia y trabajabilidad.
- Arena lavada: proveniente de ríos, pero sometida a procesos de cribado para eliminar impurezas como arcillas y limos. Se emplea en morteros y concretos de calidad por su uniformidad y limpieza interna.

2.2 Marco Legal:

2.2.1 Constitución De La República Del Ecuador (2008)

- **Art. 14.-** El derecho de la población a vivir en un ambiente sano y ecológicamente equilibrado, que garantice la sostenibilidad y el buen vivir, sumak kawsay. Se declara de interés público la preservación del ambiente, la conservación de los ecosistemas, la biodiversidad y la integridad del patrimonio genético del país, la prevención del daño ambiental y la recuperación de los espacios naturales degradados.
- Art. 71.- La naturaleza o Pacha Mama, donde se reproduce y realiza la vida, tiene derecho a que se respete integralmente su existencia y el mantenimiento y regeneración de sus ciclos vitales, estructura, funciones y procesos evolutivos. Toda persona, comunidad, pueblo o nacionalidad podrá exigir a la autoridad pública el cumplimiento de los derechos de la naturaleza. Para aplicar e interpretar estos derechos se observarán los principios establecidos en la Constitución, en lo que proceda. El Estado incentivará a las personas naturales y jurídicas, y a los colectivos, para que protejan la naturaleza, y promoverá el respeto a todos los elementos que forman un ecosistema.
- **Art. 72.-** La naturaleza tiene derecho a la restauración... En los casos de impacto ambiental grave o permanente, incluidos los ocasionados por la explotación

de los recursos naturales no renovables, el Estado establecerá los mecanismos más eficaces para alcanzar la restauración, y adoptará las medidas adecuadas para eliminar o mitigar las consecuencias ambientales nocivas.

Art. 74.- Las personas, comunidades, pueblos y nacionalidades tendrán derecho a beneficiarse del ambiente y de las riquezas naturales que les permitan el buen vivir.

Art. 276, objetivo 4.- Recuperar y conservar la naturaleza y mantener un ambiente sano y sustentable que garantice a las personas y colectividades el acceso equitativo, permanente y de calidad al agua, aire y suelo, y a los beneficios de los recursos del subsuelo y del patrimonio natural.

2.2.2. ASTM

En el proceso de muestreo y ensayo de agregados y concreto, se aplican diversas normas ASTM que garantizan la validez y confiabilidad de los resultados obtenidos en laboratorio. A continuación, se describen las principales normas consideradas:

ASTM D 75. El muestreo es tan importante como la prueba, y el muestreador deberá tomar todas las precauciones para obtener muestras que muestren la naturaleza y condición de los materiales que representan (ASTM D75, 2019).

ASTM C702 Reducción de muestras de agregados Esta práctica establece tres métodos para la reducción de muestras grandes de agregados al tamaño apropiado para las pruebas, empleando técnicas que pretenden minimizar las variaciones en las características medidas entre las muestras de pruebas seleccionadas y la muestra original.

ASTM Método de prueba para resistencia a la compresión Esta norma define el procedimiento estándar para evaluar la resistencia a la compresión de especímenes cilíndricos de concreto. Las dimensiones más utilizadas para los cilindros de ensayo son de Diámetro: 15.2 cm (6 pulgadas) por Altura: 30.4 cm

(12 pulgadas), manteniendo una relación altura/diámetro de 2:1, fundamentalmente para asegurar resultados consientes y válidos. No obstante, se permite el uso de otros tamaños, siempre que se haga dicha proporción, como, por ejemplo:

Diámetro: 10.2 cm (4 pulgadas) por Altura: 20.4 cm (8 pulgadas) (ASTM C39, 2022).

ASTM C 192 Fabricación y curado de especímenes de concreto en el laboratorio. Esta práctica abarca los procedimientos para fabricar y curar especímenes de ensayo de hormigón en el laboratorio bajo un control preciso de los materiales y condiciones de pruebas usando concreto que se puede consolidar como rodeado o vibración, con el fin de garantizar la calidad de los especímenes para ensayos posteriores.

ASTM C128 Método de prueba estándar para la densidad relativa (gravedad específica) y la absorción de agregados finos. Establece el método de ensayo para determinar la gravedad específica y la absorción de agua de los agregados finos utilizados en mezclas de concreto. Este procedimiento es fundamental para el diseño de mezclas, ya que permite calcular con precisión las proporciones de materiales y controlar la calidad del concreto. El ensayo incluye la determinación de la gravedad específica aparente, la gravedad específica en condición saturada superficialmente seca (SSD) y la absorción de agua, evaluando así la porosidad y el comportamiento del agregado frente a la humedad. Estos datos son esenciales para garantizar la durabilidad, resistencia y trabajabilidad del concreto, así como para evitar variaciones en la dosificación debidas a cambios en la humedad de los materiales. (ASTM C128, 2023).

2.2.3 Normas Técnicas Ecuatorianas (NTE INEN)

En el Ecuador, el cumplimiento de normas técnicas establecidas por el Servicio Ecuatoriano de Normalización (INEN) es fundamental para asegurar la calidad de los materiales de construcción. estas normas establecen procedimientos específicos para ensayos de laboratorio y verificación de propiedades físicas y mecánicas de los materiales, entre las más relevantes se encuentran:

La NTE INEN 696:

De acuerdo con la NTE INEN 696 (s. f.), el análisis granulométrico de áridos fino y grueso se realiza mediante tamizado, bajo procedimientos específicos de muestreo y equipos calibrados que garantizan una correcta evaluación de la distribución de tamaños, crítica para la trabajabilidad y calidad del concreto.

¿Qué son los áridos? Los áridos son materiales que se utilizan para elaborar hormigón.

¿Qué es el INEN? El INEN es el Servicio Ecuatoriano de Normalización, una entidad pública que se encarga de la normalización científica y tecnológica del país.

¿Para qué se utiliza el método de ensayo de la NTE INEN 696? Este método de ensayo se utiliza principalmente para determinar la graduación de materiales.

NTE INEN 1573:

La Norma Técnica Ecuatoriana NE INEN 1573:2010 establece los criterios para ensayar la resistencia a compresión de especímenes cilíndricos de hormigón. Como indica Zambrano Navarrete et al. (2022), los resultados obtenidos dependen significativamente de la forma, dosificación, método de curado y otros factores metodológicos asociados al ensayo.

CAPÍTULO III MARCO METODOLÓGICO

3.1 Enfoque de la investigación.

En el presente trabajo de investigación se finiquitó que existe una correlación directa entre la calidad y resistencia del hormigón desarrollado y el porcentaje de agregado grueso natural sustituido por residuos de construcción y demolición (RCD). Dependiendo principalmente de la porosidad, adherencia y composición heterogénea del reciclado, se observan variaciones notables en las propiedades mecánicas a medida que aumenta el nivel de reemplazo. La sustitución se encuentra dentro de rangos intermedios, el hormigón triturado puede alcanzar resistencias aceptables y comparables al hormigón convencional, lo que lo convierte en una técnica alternativa viable para aplicaciones estructurales específicas. Los resultados muestran que la aplicación del RCD no sólo promueve la sostenibilidad ambiental y reduce el uso de recursos naturales. Las herramientas fortalecen la triangulación de datos, lo que aumenta la validez del estudio después de abordar el problema. En este sentido, el enfoque mixto es una herramienta analítica crucial para valorar no sólo el rendimiento estructural del hormigón reciclado sino también su aceptabilidad social, viabilidad económica y relevancia ecológica dentro marco de una gestión sostenible de los recursos de la construcción.

Respecto al método cualitativo, se examina el entorno en el que se producen los desechos de construcción y demolición en Ecuador, las opiniones de los participantes en la administración de dichos residuos, y las ventajas sociales y medioambientales de su reaprovechamiento en construcciones civiles. Este método facilita entender cómo estos materiales alternativos pueden incorporarse en un modelo de edificación sustentable.

En términos cuantitativos, la investigación se enfoca en la evaluación directa de la resistencia mecánica de diversos tipos de hormigón mediante pruebas estandarizadas de compresión. Se siguen las directrices dictadas por las normativas técnicas de Ecuador, las cuales facilitan la determinación de la densidad, el desempeño y el contenido de aire en las mezclas de hormigón. Se utiliza un diseño

experimental organizado que comprende la regulación de factores como la cantidad de agregados, el periodo de curado y las condiciones del entorno.

Este enfoque, por ejemplo, permite determinar si una mezcla que contiene un porcentaje específico de RCD puede alcanzar una resistencia a la compresión comparable o igual a la del hormigón convencional, lo que tiene implicaciones directas para su uso en elementos estructurales como vigas, columnas o losas. Adicionalmente, mediante Comparando los resultados experimentales, rangos resultados dese pueden establecer rangos de aplicabilidad y factores de corrección para el diseño de mezclas en función del tipo de reciclado utilizado (hormigón triturado, ladrillo, cerámica, etc.). Se pueden establecer factores de aplicabilidad y corrección para el diseño de mezclas en función del tipo de reciclado utilizado (hormigón triturado, ladrillo, cerámica, etc.).

Por otra parte, el aspecto cualitativo del enfoque mixto permite comprender las dimensiones no cuantificables del problema. Se examina cómo los actores involucrados (ingenieros, constructores, agencias gubernamentales y ciudadanos) perciben el uso de RCD específicamente, los marcos legales que rigen su uso y las barreras sociotécnicas para su implementación en Ecuador. El análisis se apoya en la revisión de normativas nacionales, literatura científica, entrevistas a expertos y documentos técnicos, permitiendo la creación de una narrativa contextualizada y alineada con los objetivos de sostenibilidad global.

Una de las contribuciones más significativas del enfoque cualitativo es su capacidad para identificar los factores que limitan y potencialmente influyen en la adopción de este tipo de materiales en el país. Por ejemplo, mientras si Hay beneficios ambientalesbeneficios ambientales al volver a utilizar RCD, algunos sectores de la construcción también muestran resistencia debido a especificaciones técnicas poco claras, falta de conocimiento sobre su comportamiento mecánico o desventajas con respecto a su durabilidad. A la hora de volver a utilizar RCD, algunos sectores de la construcción también presentan resistencias debido a especificaciones técnicas poco claras, desconocimiento de su comportamiento mecánico o desventajas en cuanto a su durabilidad. Los hallazgos pueden ser esenciales para crear estrategias de

difusión, capacitación y políticas que faciliten su inclusión en los procesos de construcción.

La combinación de ambos enfoques proporciona una visión holística e integradora que va más allá de la simple comparación de datos de resistencia. Proponer una agenda técnica y social para el uso de materiales reciclados en la industria de la construcción, tomando en cuenta los efectos ambientales, económicos y regulatorios. El enfoque mixto fortalece la validez del estudio a través de la triangulación de datos, una técnica que aumenta la credibilidad de los hallazgos al comparar diversas fuentes y técnicas de análisis.

Aplicaciones prácticas del enfoque mixto incluyen:

- Elaboración de bases de datos locales sobre la resistencia de concretos reciclados.
- Diseño de protocolos técnicos para la dosificación de mezclas con RCD.
- Análisis del marco normativo y generación de recomendaciones políticas para la regulación del uso de materiales reciclados.

En enfoque mixto utilizado en este estudio aborda adecuadamente las demandas de un problema técnico y ambiental complejo. Además de demostrar si el hormigón con RCD es estructuralmente viable, también se pretende determinar si es socialmente aceptable, ambientalmente beneficioso y económicamente viable. Este enfoque integral transforma el presente estudio en una propuesta metodológicamente sólida y en línea con los principios del desarrollo sostenible, la economía circular y la ingeniería civil responsable.

3.2 Alcance de la investigación

El enfoque del presente estudio es descriptivo y correlacional, con un fuerte componente técnico y énfasis en el caso ecuatoriano. Esta doble dimensión permite tanto caracterizar las propiedades del material como establecer posibles relaciones entre variables importantes para el desempeño del concreto con agregados

reciclados. a ambosCaracterizar las propiedades del material y establecer relaciones entre las variables que son importantes para el desempeño del concreto con agregados reciclados. El alcance se describe en términos de teoría, práctica, espacio y tiempo.

Desde un punto de vista descriptivo, el estudio registra y examina las características físicas y mecánicas de los agregados recuperados de residuos de construcción y demolición. Las variables que se comparan con los agregados naturales tradicionalmente utilizados en el hormigón incluyen la granulometría, los ensayos de compresión y los ensayos de trazas indirectas. Estas Las propiedades se determinan mediante pruebas de laboratorio realizadas ensayos de acuerdo realizados de acuerdo a normas técnicas nacionales (NTE INEN 696 y 1579), asegurando resultados confiables y estandarizados. con normas técnicas nacionales (NTE INEN 696 y 1579), garantizando resultados confiables y estandarizados.

Esta investigación se enmarca en la búsqueda de alternativas sostenibles para la elaboración de concreto, ante la creciente problemática ambiental y social derivada de la extracción indiscriminada de recursos naturales. Un caso emblemático que evidencia esta situación es el del río Jatunyacu, en la provincia de Napo (Ecuador), donde entre octubre de 2021 y enero de 2022 se registró la destrucción de aproximadamente 70 hectáreas de bosque ribereño debido a actividades de minería ilegal. Estas prácticas, que en ocasiones se ejecutan incluso con maquinaria de origen institucional, según reportes de la Fiscalía en operativos de febrero de 2022, reflejan la urgencia de replantear las fuentes tradicionales de materiales para la construcción. En este contexto, el alcance de esta investigación se centra en evaluar la viabilidad técnica, ambiental y normativa del uso de residuos de construcción y demolición (RCD) como sustituto parcial en la producción de concreto. La investigación busca no solo demostrar la factibilidad del uso de estos materiales reciclados, sino también aportar a la construcción de una práctica más ética, sostenible y consciente. Así, se pretende reducir la presión sobre los recursos naturales, minimizar los impactos asociados a la extracción ilegal y promover un modelo de economía circular en el sector de la construcción. (Antonio, 2022).

El objetivo es minimizar la producción de residuos, que plantea desafíos ambientales como la escasez de materias primas y preocupaciones sobre la sostenibilidad. (Papamichael et al., 2023).

3.3 Técnica e instrumentos para obtener los datos

Para abordar la problemática actual de los residuos de construcción y demolición (RCD) en la construcción de hormigón, el presente estudio propone un procedimiento técnico-metodológico que incorpora enfoques puramente técnicos. El proceso descrito en los capítulos siguientes ha sido diseñado para tener en cuenta no sólo los aspectos mecánicos y de rendimiento del material sino también las dimensiones sociales, normativas y territoriales que afectan directamente a su aplicabilidad. La investigación enfoque acercarse apunta a fortalecer la validez de los hallazgos, asegurando que no sólo cumplan con criterios científicos rigurosos, sino que también tengan relevancia contextual y posibilidades reales de implementación. tiene como objetivo fortalecer la validez de los hallazgos, garantizando que no sólo cumplan con criterios científicos rigurosos, sino que también tengan relevancia contextual y posibilidades reales de implementación. De esta manera, se consolida una propuesta que apoya el desarrollo sostenible en el sector de la construcción, a la vez que facilita la gestión efectiva de los RCD mediante soluciones técnicamente sólidas y socialmente responsables.

3.3.1 Extracción de agregado reciclado (RCD)

Parte de un proyecto de remodelación de infraestructura existente, se demolió técnicamente una pérdida de concreto ubicada en la provincia de Santa Elena como parte del presente estudio. Con los objetivos de sostenibilidad de este estudio, esta intervención no sólo abordó los requerimientos estructurales del proyecto arquitectónico, sino que también aprovechó la oportunidad de recuperar y valorizar materiales provenientes de residuos de construcción y demolición (RCD).

El concreto extraído fue transportado al Laboratorio INGEOTOP de Suelos, Hormigones y Asfaltos, donde se sometió a un proceso de trituración mecánica y posterior clasificación granulométrica, siguiendo los lineamientos establecidos por las normas ASTM C136 (análisis por tamizado) y ASTM C33 (requisitos de calidad para agregados). El propósito fue obtener un agregado reciclado que cumpliera con las condiciones físicas y mecánicas necesarias para ser utilizado como agregado grueso en nuevas mezclas de hormigón.

Este material reciclado se evaluó teniendo en cuenta factores como el tamaño máximo nominal, contenido de finos, porcentaje de absorción y resistencia potencial, con el objetivo de garantizar un rendimiento apropiado en usos estructurales. El uso de este tipo de recurso es una opción técnica factible que ayuda a disminuir la extracción de áridos naturales, minimiza el efecto ambiental vinculado a la disposición de residuos y refuerza el enfoque sostenible del sector de la construcción.

En este sentido, la experiencia adquirida con el uso de RCD en el contexto de una remodelación real proporciona una prueba concreta remodelación desproporciona una prueba concreta de la viabilidad de incorporar estos materiales en nuevas formulaciones de hormigón .la viabilidad de incorporar estos materiales en nuevas formulaciones de hormigón. importancia de promover prácticas que se alineen con los postulados de la economía circular, fomentando el desarrollo de marcos técnicos y regulatorios que permitan su aplicación más generalizada en el contexto ecuatoriano.

3.3.1.1 Trituración Manual. El proceso de desintegración de los restos de residuos de construcción y demolición (RCD) residuos se realizó a mano (RCD) se realizó de forma manual con asistencia de rotomartillo, excluyéndose el uso de maquinaria pesada. con asistencia de rotomartillo, excluyendo el uso de maquinaria pesada. Se eligió esta metodología porque era operacionalmente viable en la situación de intervención y permitía un mayor control sobre la calidad del material recuperado, a pesar de ser exigente en términos de esfuerzo y tiempo. Proceso en el que el hormigón demolido fue reducido a pedazos más pequeños después de una limpieza preliminar que eliminó impurezas como restos de hierro del horno, madera, acabados y otros materiales no tóxicos.

Posteriormente, para separar los fragmentos apropiados para su uso fragmentos como para su uso como material reciclado grueso, los fragmentos

obtenidos fueron posteriormente clasificados y sometidos a un proceso mecánico tamizado. reciclado grueso, los fragmentos obtenidos fueron posteriormente clasificados y sometidos a un proceso mecánico tamizado. realizada de acuerdo con los criterios establecidos en normas técnicas como ASTM C33 e INEN 696 (agregados para hormigón), asegurando que el material recibido satisfaga los requisitos de tamaño, forma y limpieza requeridos para su reintegración a nuevas mezclas de concreto.

Este método, pese a su menor escala y mayor carga operativa que los procedimientos industriales tradicionales, evidencia ser una opción eficiente y sostenible para el uso in situ de RCD. Al reutilizar el hormigón existente, se disminuye considerablemente la necesidad de agregados naturales, se disminuye la huella ambiental vinculada al traslado y extracción de desechos, y se promueve una administración más consciente de los desechos en los proyectos de ingeniería civil.

3.3.1.2 Tamizado. El fin de reducir el tamaño de las partículas de forma controlada y eficaz, el hormigón procedente de residuos de construcción y demolición (RCD) fue sometido a un proceso de trituración manual con la ayuda de un rotomartillo. La combinación de técnicas permitió obtener un reciclado con características físicas adecuadas para su posterior utilización en mezclas experimentales . paso crucial en la preparación del material porque asegura una fragmentación adecuada que facilita su manipulación y mejora su comportamiento en futuras aplicaciones . del análisis del comportamiento estructural del hormigón con RCD, reciclado obtenido en este caso fue utilizado específicamente para desarrollar probetas cilíndricas para la ejecución de ensayos mecánicos .

Posteriormente, sometido a un proceso de tamizado utilizando tamices con aberturas de 1 1/2", 1", 3/4", 3/8", y malla N °8, permitiendo clasificar el reciclado en fracciones granulométricas específicas. El procedimiento fue crucial para remover partículas de gran tamaño y regular la presencia de aletas, asegurando que el material cumpliera con los rangos especificados en la regulación para su correcta reutilización en mezclas de concreto. La uniformidad granulométrica obtenida facilita la dosificación precisa de los áridos recuperados y mejora la trabajabilidad del hormigón,

garantizando un comportamiento adecuado en los ensayos de resistencia a compresión realizados sobre sondas cilíndricas desarrolladas en laboratorio.

3.3.1.3 Clasificación del RCD. Tras Una vez finalizado el proceso de tamizado , el material reciclado procedente de residuos de construcción y demolición (RCD) fue clasificado rigurosamente en función de su tamaño granulométrico, distinguiendo entre fracturas gruesas y delgadas con el fin de maximizar su aprovechamiento en futuras mezclas de hormigón .Una vez finalizado el proceso, el material reciclado procedente de residuos de construcción y demolición (RCD) fue clasificado rigurosamente en función de su tamaño granulométrico, distinguiendo entre fracturas gruesas y delgadas con el fin de maximizar su aprovechamiento en futuras mezclas de hormigón . Debido a que cada El tipo de fractura afecta directamente afecta las propiedades físicas y mecánicas las propiedades físicas y mecánicas del hormigón, esta clasificación fue esencial para asegurar una adecuada dosificación de los agregados reciclados, del hormigón, esta clasificación era esencial para asegurar una correcta dosificación de los áridos reciclados. Los materiales que se conservaron en los tamices de apertura más grande, como el de 1 1/2 ", 1", los de 1/2 ", 1" y 3/4", fueron identificados como reciclado grueso y fueron apropiados para el reemplazo parcial o total de ácidos naturales en mezclas estructurales. Los de 3/4", fueron identificados como gruesos y reciclados. Adecuado para la sustitución parcial o total de ácidos naturales en mezclas estructurales.

Las fracturas más finas, que quedaron retenidas en los tamices de malla de 3/8" y N°8, fueron separadas cuidadosamente para evitar su presencia excesiva en la mezcla debido a que una alta proporción de finos podría afectar negativamente la trabajabilidad, la relación cemento-aqua-cemento y la resistencia final del hormigón. tamaños dispuestos de manera sistemática en bolsas debidamente etiquetadas según su tamaño nominal, permitiendo un almacenamiento controlado, facilitando su identificación y asegurando su transferibilidad en el laboratorio. Con Para preservar la calidad dela material reciclado y asegurarse de que estaba en asegurar que estuviera en condiciones adecuadas para su uso en nuevas mezclas condición adecuada hormigón tanto para fines estructurales como no estructurales, este paso de clasificación era esencial, promoviendo una reutilización técnicamente correcta y ambientalmente responsable. Para su uso en nuevas mezclas de hormigón tanto para

fines estructurales como no estructurales , este paso de clasificación fue esencial, promoviendo una reutilización técnicamente sólida y ambientalmente responsable .

3.3.2 Análisis Granulométrico

Se realizó el análisis granulométrico con el objetivo de establecer la distribución de tamaños de las partículas, tanto del agregado fino como del agregado grueso, utilizando los métodos dictados en las normas NTE INEN 696 y ASTM C136/96. Para lograr esto, se empleó una muestra representativa de cerca de 2 kg para el agregado y 300 g para el agregado fino, que se secaron previamente en estufa a una temperatura estable de 110 °C para eliminar la humedad.

Posteriormente se realizó la clasificación granulométrica utilizando tamices normalizados dispuestos en orden decreciente, utilizando tanto maquinaria vibratoria como procedimientos de agitación manual. Se lleva a cabo utilizando tamices normalizados dispuestos en orden decreciente, utilizando tanto maquinaria vibratoria como procedimientos de agitación manual. Durante este proceso se registró el peso del material retenido en cada malla, lo que permitió construir la curva de distribución granulométrica, crucial para evaluarldoneidad del material a añadir a las mezclas de hormigón.

3.3.3 Diseño de Hormigón

El diseño de la mezcla de hormigones, que se realiza de acuerdo con las especificaciones establecidas en la Norma 211 del American Concrete Institute (ACI), es una de las principales consideraciones de esta investigación. La norma proporciona los procedimientos estándar y prácticos para elegir las proporciones de los materiales que componen el hormigón con el fin de lograr una mezcla que satisfaga los requisitos estructurales y de durabilidad solicitados por el proyecto.

Para desarrollar se deben seguir una serie de pasos básicos para desarrollar correctamente el diseño del hormigón, que tiene una resistencia de 280 kg/cm2. a Diseño de mezclas (s. f.), antes de iniciar el diseño del hormigón, se deben tomar en consideración algunos agregados, como el análisis granulométrico de los

agregados, que incluye el cálculo de la finura (MF) o tamaño máximo nominal (TMN), según el árido. Porcentaje aparentemente seca y el porcentaje de absorción de los agregados

Paso a seguir:

1. Selección del asentamiento.

El asentamiento requerido para el concreto se escogerá de acuerdo con las especificaciones del hormigón.

2. Chequeo del tamaño máximo nominal

El tamaño máximo nominal del agregado, se obtiene mediante el ensayo granulométrico de agregado.

3. Estimación del agua de mezcla

La cantidad de agua se determina por el asentamiento elegido y el tamaño máximo nominal del agregado, tomando en cuenta si es o no concreto con aire incluido. Información del expediente técnico, es necesario consultar las recomendaciones del fabricante si se va a implementar algún aditivo.

4. Determinación de la resistencia de dosificación.

El cálculo de la resistencia de dosificación se realiza de acuerdo a la resistencia expresada para el hormigon.

5. Selección de la relación agua/cemento (A/C)

La relación agua/cemento (a/c) requerida debe determinarse no sólo por los requisitos de resistencia sino también por su durabilidad y trabajabilidad.

6. Cálculo del contenido de cemento y aditivo.

Si se va a implementar aditivo, se determina la cantidad así (teniendo en cuenta las recomendaciones del fabricante, por lo general, la cantidad de aditivo se da como un % de la masa de cemento).

7. Cálculo de la cantidad de cada agregado.

Después de realizar los pasos anteriores, se obtiene el volumen de cada agregado como el cemente, arena, piedra, agua y el aditivo que vamos a implementar. Un paso importante hacia la sostenibilidad en la ingeniería civil es el diseño del hormigón que incorpora residuos de construcción y demolición (RCD). El proceso implica determinar las proporciones ideales de cemento, agua y agregados reciclados para lograr una resistencia adecuada sin comprometer la calidad del material. La reutilización de RCD en la mezcla permite un menor uso de recursos naturales, una reducción en recursos La cantidad reducción en la cantidad de residuos y la promoción de una construcción ambientalmente responsable .de residuos y la promoción de una construcción responsable con el medio ambiente. Una dosificación precisa implica que la hormona apunta a la resistencia estructural requerida. rigidez del elemento, lo que ayuda a su estabilidad.

Además, aumenta la durabilidad frente a agentes externos agentes como la humedad y los agentes químicos. como la humedad y los agentes químicos. mayor vida útil del edificio.

Además, de su valor técnico, el uso de RCD en el diseño de hormigón tiene beneficios económicos y ambientales. reduce los costos de los materiales, disminuye la extracción de recursos naturales y fomenta la economía circular dentro de la industria de la construcción. La estrategia no sólo aumenta la eficiencia del proyecto, sino que también fomenta prácticas sostenibles, demostrando que es posible lograr un equilibrio entre la calidad estructural, el respeto ambiental y la optimización de los recursos en las obras civiles contemporáneas.

3.3.3.1 Resistencia de Diseño, Tipo de Cemento y Aditivo.

RESISTENCIA DEL DISEÑO DE HORMIGON

El diseño de malla propuesto para este estudio corresponde a un hormigón con una resistencia a la compresión de 280 kg/cm² (28 MPa), el cual es frecuentemente utilizado en elementos estructurales de edificaciones convencionales incluyendo columnas, losas y vigas.

Esta resistencia fue elegida con base en criterios normativos y de uso habitual en la construcción civil, permitiendo una comparación representativa entre el comportamiento del hormigón convencional y el hormigón desarrollado con reciclado. El proceso de dosificación se desarrolló de acuerdo con los lineamientos del método ACI 211, tomando en cuenta factores como el tipo de exposición, la trabajabilidad requerida, la relación cemento/agua y las propiedades de los materiales utilizados, asegurando que el diseño satisfaga tanto los requerimientos estructurales como los parámetros de desempeño mecánico desarrollado de acuerdo con las directrices del método ACI 211, teniendo en cuenta factores como el tipo de exposición, la trabajabilidad requerida, la relación cemento/agua y las propiedades del material materiales utilizados, asegurándose de que el diseño satisface tanto los requisitos estructurales como los parámetros de rendimiento mecánico.

TIPO DE CEMENTO.

Según la norma NTE-INEN-2380:2011 (que es homologable a la ASTM C1157), el cemento Holcim Fuerte es un cemento hidráulico de uso general utilizado en proyectos de construcción convencionales para concreto y mortero.

Desarrollado con tecnología moderna, su proceso de fabricación reduce en aproximadamente un 30 % las emisiones de CO₂ en comparación con cementos Portland tradicionales, aportando al compromiso sostenible de Holcim Ecuador. (Holcim Fuerte Ecoplanet, 2025).

CARACTERÍSTICAS:

- Mezclas más eficaces que disminuyen la segregación y la exudación, además de disminuir el calor de hidratación y la fisuración precoz.
- Excelente rendimiento en fraguado y resistencia, mostrando rendimientos habituales en mortero: 30 MPa a los 28 días, excediendo la norma mínima de 28 MPa.
- Contenido de aire superior en el mortero (~4 %), dentro de los parámetros regulados, lo que favorece la durabilidad.
- Acreditado como producto respetuoso con el medio ambiente con sello de sostenibilidad por Exoplaneta.

ADITIVO: PLATOCRETE

Según Sika Plastocrete DM (s. f.), es un aditivo líquido basado en lignosulfonatos, diseñado para conferirl impermeabilidad y plastificación al hormigón. Se caracteriza por ser no tóxico, no inflamable y libre de cloruros, lo que lo hace apropiado para uso en obras exigentes desde el punto de vista técnico y ambiental.

3.3.4 Elaboración de los cilindros

El desarrollo de cilindros de hormigón es esencial para la realización de ensayos de compresión indirecta y de trazado, que permiten evaluar la calidad y resistencia del hormigón. Los detalles deben prepararse y curarse correctamente para garantizar que reflejen con precisión las propiedades del material utilizado en la obra y para producir resultados mensurables.

3.3.4.1 CILINDROS.

- Al varear cilindros, rellene: 2 capas (25 varillas) para cilindros de 4" de diámetro; 3 capas (25 varillas) para cilindros de 6" de diámetro; 4 capas (50 varillas) para cilindros de 9" de diámetro.
- Golpee el exterior de los moldes de 10 a 15 veces con un mazo o con la mano abierta por cada levantamiento.

- Al vibrar los cilindros, rellene: 2 capas para todos los tamaños de diámetro de cilindro, pero inserte el vibrador una vez para cilindros de 4" de diámetro, dos veces para cilindros de 6" de diámetro y cuatro veces para cilindros de 9" de diámetro para ambas capas.
- Inserte la varilla o el vibrador 1 pulgada dentro del elevador subyacente.
- El cilindro debe tener al menos tres veces el tamaño del agregado grueso (los agregados de más de 2" deben tamizarse húmedos para extraerlos de la mezcla).
- Los moldes cilíndricos deben tener el doble de longitud que el diámetro.(ASTM C31, s. f.).

3.3.4.2 CURADO ESTÁNDAR. La norma ASTM C511 establece que el curado estándar de cilindros de concreto debe realizarse en un ambiente controlado con una temperatura constante de alrededor de 23 ° C y una humedad relativamente alta, usualmente mayor al 95 %.

El curado estándar de cilindros de concreto debe realizarse en un ambiente controlado con una temperatura constante en torno a 23 ° C y una humedad relativamente alta, usualmente mayor al 95 %. Estas Las condiciones promueven una hidratación ideal del cemento. Proceso hidratación permitiendo que el hormigón alcance su máxima resistencia. Hormigón para alcanzar su máxima resistencia. Este Este método se utiliza ampliamente para realizar pruebas de control de calidad y aceptación .pruebas de control porque proporciona información consistente y comparable porque proporciona resultados consistentes y comparables al eliminar factores externos como los cambios de temperatura o la pérdida de humedad , que con frecuencia afectan a las muestras conservadas en el lugar de trabajo .Resultados mediante la eliminación de factores externos como cambios de temperatura o pérdida de humedad , que frecuentemente afectan a las muestras conservadas en el lugar de trabajo .(Carufel, 2020).

Un paso esencial en el desarrollo de las propiedades mecánicas del hormigón, principalmente su resistencia a la compresión, es el curado. Según la literatura de Sika Colombia, el curado debe garantizar que el concreto mantenga la humedad y

temperatura adecuadas para que el proceso de hidratación del cemento se complete de la mejor manera posible.

Para alcanzar 21 a 35 MPa después de 28 días, se aconseja un curado mínimo de 7 días, durante los cuales el concreto mantiene las condiciones requeridas para el desarrollo inicial de su resistencia. Aunque todavía no se considera definitivo para el diseño estructural, el hormigón puede alcanzar alrededor del 70% de su resistencia inicial después de tres días, lo que es útil para pruebas de control temporales.

La duración extendida a 28 días es la estándar para evaluar la resistencia nominal del hormigón porque es durante este tiempo que se alcanza la mayor parte de la resistencia mecánica y durabilidad del material.

Adicionalmente, el curado puede ajustarse a hormigones con requisitos únicos requerimientos o altas resistencias iniciales, pero siempre manteniendo la humedad y temperatura adecuadas para proporcionar un desarrollo uniforme y estable de las propiedades. Alta resistencia inicial , pero manteniendo siempre la humedad y temperatura adecuadas para proporcionar un desarrollo uniforme y estable de las propiedades..(Curado del Concreto, s. f.).

3.3.5 Ensayo a compresión

El método de prueba es aplicar una carga axial carga desde compresión a los cilindros moldeados o núcleos a una velocidad que cae dentro de un rango específico hasta que se produce la caída. La compresión a los cilindros moldeados o núcleos a una velocidad que cae dentro de un rango especificado hasta que se produce la caída es el método de prueba. La compresión de una muestra se calcula dividiendo la carga máxima alcanzada durante la prueba por la sección transversal del área de la muestra. La realización de esta prueba le permitirá determinar la capacidad de soporte estructural del hormigón. (Concrelab, 2019).

3.3.5.1 Pasos a seguir para el ensayo de compresión.

- 1. Después de estar en el proceso de curado, sacar los cilindros, teniendo en cuenta que no pierdan la humedad
- 2. Se debe verificar la perpendicularidad del cilindro usando herramienta para desarrollar el mismo
- 3. Seguido, medir la longitud y el diámetro del cilindro con un calibrador.
- 4. Ajustar la velocidad de la falla en la prensa hidráulica para iniciar con la compresión del cilindro.
- 5. En el momento que arroje los resultados, estos deben ser anotados en su respectiva hoja de datos.
- Se realizan los respectivos cálculos para encontrar la resistencia del mismo, después de haberlos realizados, se expide el respectivo informe para su correspondiente análisis y toma de decisión.

La ejecución del ensayo requiere el cumplimiento de requisitos técnicos específicos que deben ser realizados por personal cualificado, como el técnico de laboratorio en hormigón, un ayudante o aprendiz debidamente instruido, y bajo la supervisión directa del responsable del Laboratorio de Calidad. La estructura de trabajo garantiza la fiabilidad de los resultados, así como el cumplimiento de las normas técnicas vigentes aplicables a los ensayos de control de calidad de hormigón.

3.3.6 Ensayos a tracción del hormigón: Ensayos indirectos

A Contraste con el hormigón directo de trazado pruebas de rastreo, los ensayos de trazado indirecto hacen que la probeta gire debido a las tensiones de trazado creadas por la compresión o el trazado flexográfico. Las pruebas de rastreo indirecto hacen que la sonda gire debido a las tensiones de rastreo creadas por la compresión o el rastreo flexográfico. Se utilizan con más frecuencia porque son más fáciles de realizar y proporcionan una estimación confiable de la resistencia al rastreo.

El método más utilizado y estandarizado para determinar la resistencia a la tracción indirecta de hormigones es el ensayo brasileño. El procedimiento consiste en

aplicar una carga diametral a una probeta cilíndrica, provocando esfuerzos de seguimiento en su plano hasta el proceso de rotura. Se rige por varias normas internacionales, entre ellas ASTM C -496, UNE 83.306 e ISO 4108, lo que garantiza su fiabilidad y repetibilidad en diversos contextos técnicos .(Ángel, 2014).

Procedimiento del ensayo brasileño (tracción indirecta):

- Preparación de la muestra: Se hace uso de una probeta de forma cilíndrica, colocada horizontalmente entre los platos de compresión. Aquí al momento que colocar el cilindro se utiliza una base para realizar los ensayos.
- 2. **Aplicación de la carga:** Se emplea una carga de compresión en el plano diametral de la probeta, generalmente a través de franjas de contacto delgadas para evitar concentraciones de esfuerzo.
- 3. **Generación de tensiones internas:** La obligación compresiva genera fuerzas diametralmente opuestas, que inducen una distribución uniforme de tensiones de tracción a lo largo del plano diametral de la muestra.
- 4. **Rotura de la muestra:** Como resultado de estas tensiones de tracción, la muestra se fisura y rompe por tracción indirecta, permitiendo calcular la resistencia a tracción del hormigón.

Una vez realizado el procedimiento para ejecutar los ensayos a tracción indirecta. Se obtienen los datos de la Cmax. Con este dato nos vamos a la fórmula que nos ayuda a encontrar la resistencia del mismo.

3.4 Población y muestra

Para el desarrollo del presente estudio se estableció una población de aproximadamente 15 cilindros por tipo de dosificación, incluyendo una mezcla patrón. Con el objetivo de evaluar el comportamiento del hormigón frente a diversas proporciones de hormigón recuperado, se construyeron un total de noventa cilindros de hormigón que se utilizaron para realizar los ensayos mecánicos de compresión y trazo indirecto.

La distribución de las muestras se organizó de la siguiente manera:

Los 15 cilindros de concreto convencional con una resistencia característica de 280 kg/cm², considerados como la muestra patrón o de referencia.

- 15 cilindros de concreto con reemplazo del 100% del agregado grueso natural por agregado grueso reciclado (AGR).
- 15 cilindros con reemplazo del 75% de agregado grueso natural por AGR.
- 15 cilindros con reemplazo del 50% de agregado grueso natural por AGR.
- 15 cilindros con reemplazo del 25% de agregado grueso natural por AGR.
- 15 cilindros con reemplazo del 15% de agregado grueso natural por AGR.

Tomando como base el patrón convencional, esta clasificación permitió realizar un análisis comparativo del impacto de la incorporación progresiva del agregado reciclado en la resistencia del hormigón. De esta manera, se creó un diseño experimental que asegura la repetibilidad y validez estadística de los resultados obtenidos.

3.5 Tipos de muestra aplicados en la investigación

En el transcurso de este estudio se identificaron diversas técnicas de muestreo cualitativo que, adaptadas al entorno experimental, permiten una mejor comprensión de la metodología utilizada para la selección y estructuración de las muestras.

En primer lugar, se utilizó una muestra de casos comunes fue utilizado, en los que se añadió una mezcla de hormigón con una dosificación estándar de 280 kg/cm². Esto es comparable al hormigón convencional de uso frecuente en la construcción civil. en el que una mezcla de hormigón se añadió una dosis estándar de 280 kg/cm². Esto es comparable a un hormigón convencional que...Se utiliza frecuentemente en la construcción civil.

Se consideraron varios casos críticos porque el objetivo principal fue evaluar el desempeño del hormigón luego de reemplazar el hormigón natural por reciclado en

porcentajes variables (15%, 25 %, 50%, 75% y 100%). Los contextos representan situaciones de limitación que facilitan la identificación de posibles efectos positivos o negativos sobre el comportamiento estructural del material.

Además, se realizó una prueba de cuotas, estableciendo un número constante de 15 cilindros por dosis. Esto permitió una distribución justa y controlada entre las distintas variaciones de la mezcla, asegurando una base sólida para comparar los resultados. Se efectuó un análisis de laboratorio, estableciendo un número constante de 15 cilindros por dosis. Esto permitió una distribución justa y controlada entre las distintas variaciones de la mezcla, asegurando una base sólida para comparar los resultados.

.

CAPÍTULO IV PROPUESTA O INFORME

4.1 Presentación y análisis de resultados

4.1.1 Agregado Grueso Reciclado

4.1.1.1 Trituración Del Agregado Reciclado. En esta investigación se aprovechó la demolición de una losa de concreto en Santa Elena para recuperar residuos de construcción y demolición (RCD), los cuales fueron procesados en el Laboratorio INGEOTOP bajo normas ASTM C136 y C33. El material obtenido se utilizó como agregado grueso reciclado en nuevas mezclas de hormigón, demostrando su viabilidad técnica y aportando al enfoque sostenible y de economía circular en el sector constructivo.

Figura 1: Trituración del agregado reciclado

Elaborado por: Mite & Reyes (2025)

La fragmentación de las losas provenientes de residuos de construcción y demolición (RCD) se realizó manualmente con apoyo de rotomartillo, lo que permitió prescindir de maquinaria pesada y controlar la calidad del material recuperado. Tras una limpieza inicial para eliminar impurezas, los fragmentos fueron clasificados y tamizados mecánicamente según las normas INEN 696 y ASTM C33, obteniendo un agregado grueso reciclado apto para su reutilización. Aunque el proceso fue más exigente operativamente, demostró ser una alternativa técnica y sostenible que reduce el uso de áridos naturales y promueve una gestión responsable de los residuos en la construcción.

Figura 2
Trituración del agregado reciclado.

Elaborado por: Mite & Reyes (2025)

Figura 3
Trituración del agregado reciclado

4.1.1.2 Tamizaje Del Agregado Reciclado. El hormigón reciclado proveniente de residuos de construcción y demolición (RCD) fue triturado manualmente con apoyo de rotomartillo, permitiendo una reducción controlada del tamaño de partícula. Este proceso garantizó características físicas adecuadas del agregado reciclado para su uso en mezclas experimentales. El material obtenido fue destinado a la fabricación de probetas cilíndricas para ensayos de resistencia a compresión. Posteriormente, se realizó un tamizado con aberturas de 1 1/2", 1", 3/4", 3/8" y malla N°8, clasificando el agregado en fracciones granulométricas específicas. Esta selección permitió controlar la cantidad de finos y asegurar la uniformidad del material, facilitando su dosificación y mejorando la trabajabilidad del concreto en laboratorio.

Figura 4
Tamizaje del agregado reciclado

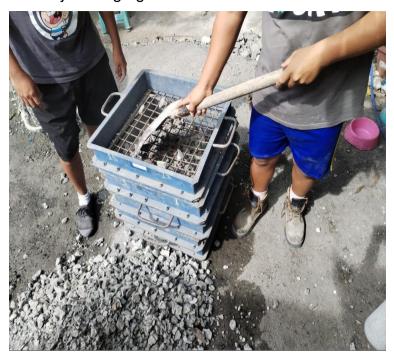


Figura 5
Tamizaje del agregado reciclado

Elaborado por: Mite & Reyes (2025)

Figura 6
Tamizaje del agregado reciclado

4.1.1.3 Clasificación Del RCD.

Figura 7
Tamizaje del agregado reciclado

Elaborado por: Mite & Reyes (2025)

Figura 8

Tamizaje del agregado reciclado

4.1.2 Ensayo Granulométrico

El análisis granulométrico se efectuó con el propósito de determinar la distribución del tamaño de partículas del agregado fino y grueso reciclado, conforme a los procedimientos establecidos en las normas NTE INEN 696 y ASTM C136. Para ello, se seleccionaron muestras representativas de cada tipo de agregado, las cuales fueron previamente secadas para eliminar la humedad y evitar alteraciones en los resultados. La clasificación se realizó utilizando tamices normalizados dispuestos en orden decreciente, aplicando métodos de agitación tanto mecánicos como manuales, a fin de asegurar una adecuada separación del material por tamaño.

Durante el proceso, se registró el peso del material retenido en cada malla, lo que permitió construir la curva de distribución granulométrica. Esta curva resulta fundamental para evaluar la adecuación del agregado reciclado en mezclas de hormigón, ya que influye directamente en la trabajabilidad, la compactación y el desempeño mecánico del material final. La caracterización granulométrica se

constituye, por tanto, en un paso esencial dentro del proceso de validación técnica del uso de RCD, fortaleciendo el enfoque sostenible adoptado en esta investigación.

La adecuada caracterización granulométrica del agregado reciclado no solo permite cumplir con los parámetros establecidos en la normativa técnica, sino que también contribuye a optimizar el diseño de la mezcla. Una curva bien distribuida mejora la compacidad del hormigón, reduce la demanda de agua y favorece la adherencia entre la pasta cementante y los agregados. En el caso del agregado proveniente de residuos de construcción y demolición, esta evaluación cobra especial relevancia, ya que la heterogeneidad del material puede afectar su comportamiento mecánico. Por ello, asegurar una granulometría controlada es clave para garantizar la calidad, la homogeneidad y el desempeño estructural de las probetas elaboradas para los ensayos experimentales de resistencia.

4.1.3 Diseño de Hormigón

Una vez establecidos los parámetros iniciales del diseño, conforme a los lineamientos de la norma ACI 211, se procedió a realizar la dosificación experimental del hormigón con una resistencia objetivo de 280 kg/cm². Este proceso consideró tanto las propiedades físicas de los agregados reciclados como los valores obtenidos en los ensayos previos, tales como el análisis granulométrico, el módulo de finura, el porcentaje de absorción y el contenido de humedad. Estos factores fueron determinantes para ajustar adecuadamente la relación agua/cemento y la proporción de cada componente de la mezcla. A partir de esta base técnica, se elaboraron diferentes dosificaciones con el objetivo de evaluar su comportamiento mecánico y establecer su viabilidad estructural. Los resultados obtenidos a continuación reflejan el desempeño del concreto producido con agregados reciclados frente a los criterios establecidos por la normativa.

Con base en las dosificaciones planteadas, se procedió a la elaboración de probetas cilíndricas que fueron curadas y ensayadas a distintas edades con el fin de evaluar su desempeño mecánico. Se realizaron ensayos de resistencia a la compresión para determinar la capacidad del hormigón de soportar cargas axiales, así como ensayos de tracción indirecta (ensayo brasileño), que permitieron valorar su

comportamiento frente a esfuerzos de tracción, una propiedad crítica para prevenir fisuras y garantizar la durabilidad estructural. Estos procedimientos brindaron una visión integral del rendimiento del concreto reciclado en comparación con el convencional, evaluando su trabajabilidad, cohesión y evolución de resistencia en el tiempo. Los resultados obtenidos constituyen la base para analizar la viabilidad técnica del uso de agregados reciclados, aportando al desarrollo de soluciones sostenibles en el ámbito de la construcción.

En el Anexo 01 podemos encontrar el diseño de hormigón que se ejecutó.

4.1.4 Dosificación para la elaboración del cilindro

Una vez obtenido el diseño del hormigón con una resistencia característica de 280 kg/cm², se procedió a establecer las diferentes dosificaciones para la elaboración de los cilindros de prueba. Estas dosificaciones se definieron en función del porcentaje de reemplazo del agregado grueso natural por agregado grueso reciclado proveniente de residuos de construcción y demolición (RCD). Se consideraron seis proporciones de sustitución: 0 % (mezcla patrón), 15 %, 25 %, 50 %, 75 % y 100 %. La inclusión de una muestra patrón permitió establecer una base de comparación confiable respecto al comportamiento del concreto convencional frente a las mezclas con material reciclado.

Cada mezcla fue dosificada cuidadosamente respetando las proporciones del diseño original, ajustando únicamente el contenido de agregado reciclado en función del porcentaje correspondiente. A partir de estas dosificaciones se elaboraron probetas cilíndricas que fueron sometidas a ensayos de resistencia a compresión y tracción indirecta (ensayo brasileño), con el objetivo de analizar el comportamiento mecánico del concreto reciclado. Los resultados obtenidos permiten identificar las variaciones en las propiedades estructurales del material, y así determinar el porcentaje óptimo de reemplazo que garantice un equilibrio entre resistencia, durabilidad y sostenibilidad.

Este proceso implicó una cuidadosa medición y control de cada componente para asegurar la homogeneidad y consistencia de las mezclas, teniendo en cuenta

las características particulares del agregado reciclado, tales como su absorción y densidad, que pueden influir en la trabajabilidad y resistencia del concreto. La adecuada dosificación permitió obtener mezclas comparables entre sí, facilitando el análisis del impacto que tiene la sustitución del agregado natural por reciclado en las propiedades mecánicas del hormigón.

Posteriormente, las mezclas fueron empleadas para la elaboración de probetas cilíndricas, las cuales fueron curadas y sometidas a ensayos de resistencia a compresión y tracción indirecta, con el fin de evaluar el desempeño estructural de cada dosificación y determinar la viabilidad técnica del uso de agregados reciclados en diferentes porcentajes.

4.1.5 Ensayo a compresión.

HORMIGON TRADICIONAL – MEZCLA PATRON RESISTENCIA DE 280 kg/cm2

Para realizar el ensayo de compresión, primero se midieron los diámetros de cada cilindro, calculando un promedio para obtener un valor representativo. Con este dato y la altura de la probeta se determinó el área transversal, necesaria para el cálculo de la resistencia. Luego se registró el peso de cada muestra y se colocó en la prensa de compresión.

La máquina aplicó una carga constante hasta provocar la rotura del cilindro, registrando la carga máxima soportada. Dividiendo este valor entre el área previamente calculada, se obtuvo la resistencia a la compresión. Este procedimiento se repitió para la mezcla patrón y para las dosificaciones con 15%, 25%, 50%, 75% y 100% de agregado reciclado, permitiendo comparar su desempeño mecánico.

Figura 9 Obtención de datos del cilindro

Figura 10
Colocación de cilindros en la prensa hidráulica

Elaborado por: Mite & Reyes (2025)

Figura 11 Rotura de cilindros

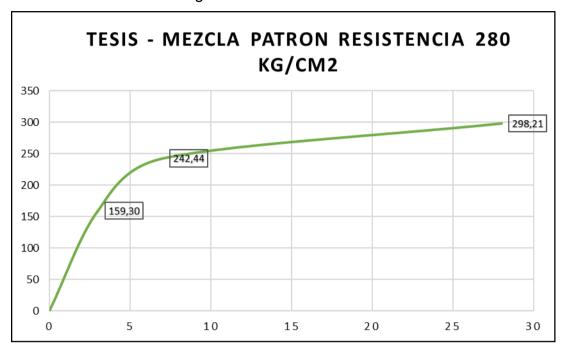


Tabla 4
Resultados de los ensayos a compresión

RESULTADOS	
TESIS – MEZCLA PATRON, RESISTENCIA DE 280kg/cm2	
RESISTENCIA	DIAS
159,30	3
242,44	7
298,21	28

Elaborado por: Mite & Reyes (2025)

Figura 12
Curva de la resistencia según el curado

HORMIGON CON AGREGADO RECICLADO – 15% DE AGREGADO GRUESO RECICLADO RESISTENCIA DE 280 kg/cm²

Tabla 5
Resultados de los ensayos a compresión - 15% RCD

RESULTADOS		
TESIS – MEZCLA PATRON, RESISTENCIA DE 280kg/cm2		
RESISTENCIA	DIAS	
186,49	3	
236,81	7	
297,72	28	

Figura 13
Curva de la resistencia según el curado

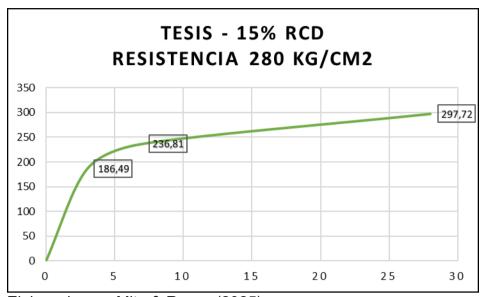


Figura 14
Obtención de datos del cilindro.

Figura 15
Colocación de cilindros en la prensa hidráulica

HORMIGON CON AGREGADO RECICLADO – 25% DE AGREGADO GRUESO RECICLADO RESISTENCIA DE 280 kg/cm²

Tabla 6
Resultados de los ensayos a compresión - 25% RCD

RESULTADOS		
TESIS – MEZCLA PATRON, RESISTENCIA DE 280kg/cm2		
RESISTENCIA	DIAS	
196,6	3	
248,20	7	
302,58	28	

Figura 16 Curva de la resistencia según el curado

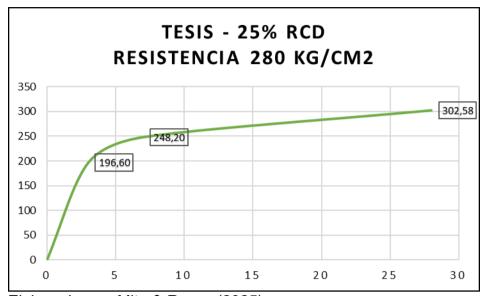


Figura 17 Obtención de datos del cilindro.

Figura 18
Colocación de cilindros en la prensa hidráulica.

HORMIGON CON AGREGADO RECICLADO – 50% DE AGREGADO GRUESO RECICLADO RESISTENCIA DE 280 kg/cm2

Tabla 7
Resultado de los ensayos a compresión - 50% RCD

RESULTADOS		
TESIS – MEZCLA PATRON, RESISTENCIA DE 280kg/cm2		
RESISTENCIA	DIAS	
196,6	3	
248,20	7	
302,58	28	

Figura 19
Curva de la resistencia según el curado

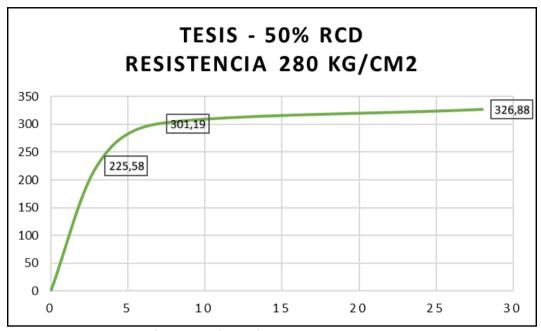


Figura 20 Obtención de datos del cilindro.

Figura 21
Colocación de cilindros en la prensa hidráulica.

HORMIGON CON AGREGADO RECICLADO – 75% DE AGREGADO GRUESO RECICLADO RESISTENCIA DE 280 kg/cm²

Tabla 8
Resultado de los ensayos a compresión - 75% RCD

RESULTADOS		
TESIS – MEZCLA PATRON, RESISTENCIA DE 280kg/cm2		
RESISTENCIA	DIAS	
229,95	3	
308,2	7	
334,93	28	

Figura 22 Curva de la resistencia según el curado

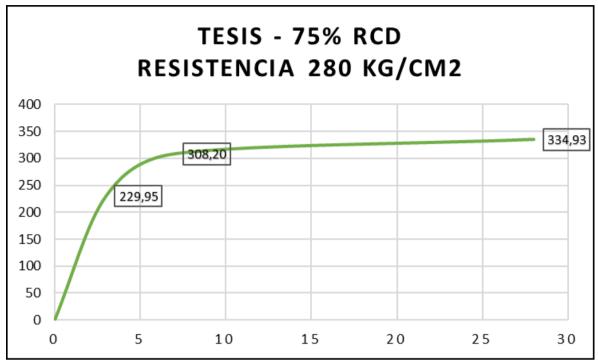
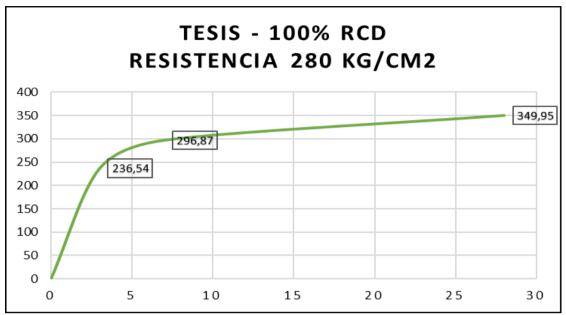


Figura 23
Obtención de datos del cilindro.

Figura 24
Colocación de cilindros en la prensa hidráulica.



HORMIGON CON AGREGADO RECICLADO - 100% DE AGREGADO GRUESO RECICLADO RESISTENCIA DE 280 kg/cm2

Tabla 9
Resultado de los ensayos a compresión - 100% RCD

RESULTADOS		
TESIS – MEZCLA PATRON, RESISTENCIA DE 280kg/cm2		
RESISTENCIA	DIAS	
236,45	3	
296,87	7	
349,95	28	

Figura 25 Curva de la resistencia según el curado

COMPARACIÓN DE RESULTADOS DEL HORMIGON (MEZCLA PATRÓN) CON UN HORMIGON DE AGREGADO RECICLADO

RESISTENCIA DE 280 kg/cm2

Tabla 10

Comparación de resultados del ensayo a compresión.

RESULTADOS TESIS – MEZCLA PATRON, RESISTENCIA DE 280kg/cm2						
DIAS	MEZCLA PATRON	100%	75%	50%	25%	15%
3	159,30	236,45	229,95	196,6	196,6	186,49
7	242,44	296,87	308,2	248,20	248,20	236,81
28	298,21	349,95	334,93	302,58	302,58	297,72

ANÁLISIS DE RESULTADOS 297,72 302,58 302,58 28 334.93 349,95 298,21 236,81 248,2 248,2 7 308,2 296.87 242,44 186,49 196.6 196.6 3 229,95 236.45 159,3

Figura 26
Comparación de resultados del ensayo a compresión

4.1.6 Ensayo a tracción indirecta (MÉTODO BRASILEÑO)

Para el ensayo de tracción indirecta, conocido como método brasileño, se colocaron las probetas cilíndricas en posición horizontal dentro de la máquina de ensayo, aplicando la carga a lo largo de su diámetro mediante tiras de madera contrachapada que distribuyeron uniformemente la presión. Previamente, se midieron los diámetros y la longitud de cada cilindro para calcular el área de aplicación de la carga.

La máquina aplicó la carga de forma constante hasta provocar la fractura, registrando la carga máxima soportada. Con este valor y el área determinada, se calculó la resistencia a tracción indirecta. Según la literatura técnica, este valor debe representar entre el 8 % y el 12 % de la resistencia a compresión del mismo concreto, lo que permite evaluar la calidad y cohesión interna del material. El procedimiento se realizó tanto para la mezcla patrón como para las dosificaciones con 15 %, 25 %, 50 %, 75 % y 100 % de agregado reciclado, facilitando la comparación de resultados.

HORMIGON TRADICIONAL – MEZCLA PATRON RESISTENCIA DE 280 kg/cm2

Tabla 11
Resultados de ensayo a tracción indirecta (brasileño).

RESULTADOS			
TESIS – MEZCLA PATRON, RESISTENCIA DE 280kg/cm2			
RESISTENCIA DIAS PORCENTAJE			
19.08	7	8.08	
28.99	28	9.72	

Elaborado por: Mite & Reyes (2025)

Figura 27
Rotura de cilindros – Ensayo a tracción indirecta.

Figura 28
Rotura de cilindros – Ensayo a tracción indirecta.

HORMIGON CON AGREGADO RECICLADO – 15% DE AGREGADO GRUESO RECICLADO RESISTENCIA DE 280 kg/cm²

Tabla 12
Resultados de ensayo a tracción indirecta (brasileño)

RESULTADOS			
15% DE AGREGADO GRUESO RECICLADO			
RESISTENCIA DIAS PORCENTAJE			
20,35	7	8,59	
29,88	28	10,04	

HORMIGON CON AGREGADO RECICLADO – 25% DE AGREGADO GRUESO RECICLADO RESISTENCIA DE 280 kg/cm²

Tabla 13
Resultados de ensayo a tracción indirecta (brasileño)

RESULTADOS		
25% DE AGREGADO GRUESO RECICLADO		
RESISTENCIA DIAS PORCENTAJE		
19,94	7	8,03
28,85	28	9,53

Elaborado por: Mite & Reyes (2025)

HORMIGON CON AGREGADO RECICLADO – 50% DE AGREGADO GRUESO RECICLADO RESISTENCIA DE 280 kg/cm²

Tabla 14
Resultados de ensayo a tracción indirecta (brasileño)

RESULTADOS			
50% DE AGREGADO GRUESO RECICLADO			
RESISTENCIA	DIAS	PORCENTAJE	
17,77	7	5,90	
23,86	28	7,30	

HORMIGON CON AGREGADO RECICLADO – 75% DE AGREGADO GRUESO RECICLADO RESISTENCIA DE 280 kg/cm²

Tabla 15
Resultados de ensayo a tracción indirecta (brasileño)

RESULTADOS			
75% DE AGREGADO GRUESO RECICLADO			
RESISTENCIA	DIAS	PORCENTAJE	
19,99	7	6,48	
23,69	28	7,07	

Elaborado por: Mite & Reyes (2025)

HORMIGON CON AGREGADO RECICLADO – 100% DE AGREGADO GRUESO RECICLADO RESISTENCIA DE 280 kg/cm²

Tabla 16
Resultados de ensayo a tracción indirecta (brasileño)

RESULTADOS		
100% DE AGREGADO GRUESO RECICLADO		
RESISTENCIA	DIAS	PORCENTAJE
19,87	7	6,69
26,80	28	7,66

Figura 29
Rotura de cilindros – Ensayo a tracción indirecta.

COMPARACIÓN DE RESULTADOS DEL HORMIGON (MEZCLA PATRÓN) CON UN HORMIGON DE AGREGADO RECICLADO

RESISTENCIA DE 280 kg/cm2

Tabla 17

Comparación de resultados del ensayo a tracción indirecta

RESULTADOS						
TESIS – MEZCLA PATRON, RESISTENCIA DE 280kg/cm2						
DIAS	MEZCLA PATRON	100%	75%	50%	25%	15%
7	19.08	19,87	19,99	17,77	19,94	20,35
28	28.99	26,80	23.69	23,86	28,85	29,88
	CUMPLE	NO CUMPLE	NO CUMPLE	NO CUMPLE	CUMPLE	CUMPLE

Elaborado por: Mite & Reyes (2025)

69

CONCLUSIONES

La investigación actual posibilitó el análisis exhaustivo del comportamiento mecánico del concreto con agregado grueso reciclado (que proviene de residuos de demolición y construcción, RCD) en reemplazo total o parcial del agregado natural, utilizando un diseño de mezcla que tiene como meta una resistencia de 280 kg/cm² y acatando las pautas metodológicas de la norma ACI 211.

Los resultados del ensayo de compresión mostraron que las dosificaciones que fueron evaluadas con porcentajes de reemplazo del 15 %, 25 %, 50 %, 75 % y 100 % lograron o excedieron el valor de resistencia que se había fijado en el diseño. Esto demuestra que, si se somete a un control estricto de la relación agua/cemento y se escoge y clasifica correctamente la granulometría de los agregados reciclados, además de llevar a cabo un proceso de curado apropiado, se puede asegurar un rendimiento estructural ideal, incluso en situaciones en las que el agregado grueso natural es reemplazado por completo. Cuando se utilizan métodos de dosificación apropiados y los parámetros de producción se supervisan, el análisis comparativo evidenció que el empleo de RCD no produce reducciones notables en la resistencia a compresión.

Esto respalda la factibilidad técnica de su aplicación en proyectos civiles que necesiten hormigón estructural, siempre y cuando se respeten las normativas vigentes. En lo que respecta al ensayo de tracción indirecta (método brasileño), se determinó que las combinaciones con un 15 % y un 25 % de agregado reciclado cumplieron adecuadamente con la gama normativa establecida por el ACI 318, la cual estipula que la resistencia a tracción debe estar entre el 8 % y el 12 % de la resistencia a compresión.

Los porcentajes mostraron una cohesión interna apropiada y un comportamiento mecánico estable, según las pruebas efectuadas a los 7 y 28 días. Esto demuestra que el agregado reciclado no pone en peligro la integridad estructural ante esfuerzos de tracción indirecta en estas situaciones.

Por otro lado, las dosificaciones con reemplazos al 50%, 75% y 100% no se ajustaron a lo que establece el ACI 318 en términos de la relación entre la resistencia a tracción indirecta. Este resultado indica que, aunque estos compuestos pueden utilizarse en componentes estructurales o no estructurales de menor requerimiento, sería necesario modificar la dosificación como aumentar el contenido de cemento, añadir aditivos plastificantes o disminuir la relación entre agua y cemento para optimizar su rendimiento en este tipo de solicitudes.

Además, la investigación evidenció que para garantizar la estabilidad del material y reducir las variaciones en los resultados mecánicos es crucial una clasificación granulométrica precisa del RCD, acompañada por un estricto control en las fases de curado, trituración y tamizado. Esto, a su vez, ayuda a producir un hormigón con propiedades consistentes que puede satisfacer los estándares de calidad requeridos por las normas NTE INEN y ASTM.

Se deduce que el porcentaje de reemplazo del agregado grueso natural por desechos de edificación y demolición (RCD) conserva una correlación directa con la calidad y la resistencia del concreto producido. Conforme se incrementa el nivel de reemplazo, se observan cambios notables en las características mecánicas, principalmente a causa de la porosidad, la adhesión y la diversa composición del agregado reciclado.

No obstante, cuando el reemplazo se sitúa en intervalos intermedios, el concreto triturado puede lograr resistencias aceptables y equiparables a las del hormigón tradicional, lo que lo hace una opción técnica factible para ciertas aplicaciones estructurales. Estos hallazgos evidencian que el uso de RCD no solo favorece la sostenibilidad del medio ambiente y la disminución del consumo de recursos naturales, sino que también contribuye a la optimización del uso de recursos naturales.

Desde el punto de vista medioambiental, emplear agregado grueso reciclado es una táctica eficaz para promover la economía circular en la industria de la construcción. Esto se debe a que disminuye la extracción de áridos naturales y reduce la cantidad de escombros enviados a rellenos sanitarios o botaderos. Esta actividad

contribuye a disminuir la huella de carbono relacionada con la fabricación de hormigón, lo cual refuerza el compromiso con las bases del desarrollo sostenible y con los Objetivos de Desarrollo Sostenible (ODS) relacionados con la industria, innovación, infraestructura y acción climática.

Así mismo, para su implementación, brindan pautas exactas, sugiriendo que las dosificaciones con porcentajes de sustitución bajos y medios proporcionan un balance perfecto entre la resistencia mecánica, la posibilidad técnica y el beneficio medioambiental.

Luego de haber finalizado este trabajo, se obtuvo varias conclusiones que vamos compartir no solamente como resultados académicos, sino también como enseñanzas personales. Porque una tesis no es solo un documento técnico, sino también un recorrido repleto de desafíos, incertidumbres y hallazgos.

Una primera conclusión es que el hormigón con agregados reciclados sí es viable, pero con ciertos límites. En los ensayos vimos que hasta porcentajes intermedios (15%, 25% e incluso 50%) se logra una resistencia aceptable. Sin embargo, cuando ya se reemplaza más del 75%, la resistencia baja demasiado. Eso me hace pensar que, en obras de alta exigencia estructural, no sería recomendable usar tanto reciclado, pero sí se puede aprovechar en elementos secundarios como aceras, bordillos, camineras o en construcciones de menor escala.

Otro desenlace importante es que este tipo de investigaciones abre la puerta a nuevas formas de pensar la construcción en Ecuador. Aquí todavía se tiene la idea de que solo lo "nuevo" sirve y lo "reciclado" es de menor calidad. Sin embargo, los resultados muestran que, bien procesado, el material reciclado puede funcionar muy bien. Creo que este prejuicio cultural es un reto, y como ingenieros jóvenes podemos cambiarlo con evidencia y proyectos reales.

También como conclusión es que la resistencia mecánica no lo es todo. El hormigón reciclado puede ser un poco menos fuerte, pero tiene una ganancia ambiental enorme: menos basura en los botaderos, menos extracción de áridos de ríos y canteras, y un aporte directo a la economía circular. Esto me hace concluir que,

como futuros profesionales, debemos buscar siempre un balance entre lo técnico, lo económico y lo ambiental.

Asimismo, en Ecuador queda un largo camino por recorrer en cuanto a la gestión de residuos. Es probable que, si las plantas de reciclaje estuvieran mejor organizadas y los procesos de trituración y limpieza fueran más controlados, la calidad de los agregados reciclados aumentara y los resultados en términos de resistencia también. Aquí identifico una ocasión para innovar y emprender para aquellos que deseen dedicarse a esta área.

Para los futuros ingenieros que están próximo a realizar una tesis como esta, se concluye que para darle vida a un material que generalmente termina en vertederos ilegales en este caso es el RCD, es más que simplemente utilizar fórmulas o ensayos. Fuimos educado para aprender a ser paciente, aceptar los errores y apreciar el trabajo en equipo. En numerosas ocasiones tuvimos que limpiar probetas, esperar mucho en el laboratorio o volver a hacer mezclas. Comprendí que la ingeniería no es únicamente teoría, sino también persistencia y práctica durante esos momentos.

Dar a conocer que este estudio no se queda aquí. Puede servir como base para más investigaciones, para proyectos piloto en municipios o para motivar a las universidades a invertir en laboratorios más especializados. Lo que nosotros hicimos es apenas un inicio, pero demuestra que sí es posible construir de manera más sostenible en nuestro país.

En conclusión, este trabajo dejó una doble enseñanza: por un lado, la técnica, porque se comprobó que el concreto con agregados reciclados puede alcanzar resistencias aceptables si se maneja de forma adecuada, y por otra sabiduría, porque cada ensayo, cada error y cada acierto se convirtieron en lecciones que sirvieron para crecer como estudiante y como futuro ingenieros. No fue un camino fácil, hubo momentos de frustración en lo que se pensó en renunciar en muchas ocasiones, pero justamente ahí comprendimos que lo importante no es solo el resultado final, sino la constancia para llegar a él. Y sé que si tú, que quizás algún día pases por algo

parecido, te enfrentas a esas mismas dudas, también vas a descubrir que en cada equivocación hay un aprendizaje escondido.

El estudio evidenció que en Ecuador aún existen limitaciones en la gestión de los residuos de construcción y demolición, principalmente por la falta de procesos estandarizados de clasificación y reciclaje. Aun así, se comprobó que con un tratamiento adecuado, estos materiales pueden transformarse en una alternativa viable para proyectos de bajo y mediano requerimiento estructural.

Los resultados permiten concluir que la resistencia no debe ser considerada como el único criterio de evaluación. Factores como la durabilidad, el costo y el impacto ambiental también influyen en la decisión de utilizar este tipo de materiales. Bajo esta visión integral, el hormigón reciclado puede considerarse una alternativa válida en escenarios controlados.

El estudio también reveló que la ausencia de regulaciones específicas en Ecuador impide el uso masivo de agregados reciclados. A pesar de que ya hay normativas internacionales y algunas locales sobre la gestión de residuos, todavía no existen pautas claras que fomenten su aplicación en proyectos estructurales. Esto crea desconfianza en los constructores y en los profesionales del sector, que todavía ven a los materiales reciclados como una opción de calidad inferior. Los datos obtenidos indican que el concreto reciclado puede llegar a niveles de resistencia apropiados para determinados usos cuando se siguen procesos controlados. La puesta en marcha de programas que incentiven y de normas particulares podría propiciar un cambio cultural en la industria y mejorar la aceptación de estos materiales.

También como aspecto crucial es que el concreto con agregados reciclados puede tener aplicaciones directas en infraestructura urbana de bajo requerimiento, como aceras, camineras, bordillos y elementos prefabricados. Aunque no exigen resistencias máximas, representan una gran parte de las obras que se ejecutan a nivel municipal y comunitario. Integrar RCD material en grandes proyectos significaría un avance importante en la sostenibilidad, demostrando que la innovación no siempre

depende de grandes inversiones, sino de decisiones responsables en la selección de materiales.

Al utilizar agregados reciclados influye a reducir el impacto ambiental, el cual puede ser un punto de partida para fomentar la innovación tecnológica en Ecuador, generalmente en el mundo. Actualmente la disposición de estos materiales muestra ciertas limitaciones, la progresiva petición por medios sostenibles podría estimular el adelanto de plantas de procesamiento más eficientes, equipos de trituración especializados y sistemas de control de calidad más rigurosos. Aquello daría paso a nuevas oportunidades en el ámbito de la investigación y el desarrollo, involucrando tanto a universidades como a empresas privadas, y generando un entorno propicio para la creación de tecnología nacional. Así, el impulso a esta práctica no solo beneficiaría al sector de la construcción, sino que también tendría un efecto positivo en la industria en general, promoviendo el crecimiento económico y la generación de empleo calificado.

El principal reto en la aplicación del concreto reciclado no radica únicamente en los aspectos técnicos, sino también en la aceptación cultural. La resistencia inicial hacia todo lo que lleva la etiqueta de "reciclado" surge, en gran parte, de prejuicios y de la falta de información. No obstante, a medida que se desarrollen más estudios, se obtengan resultados experimentales y se ejecuten proyectos piloto que demuestren su eficiencia, será posible transformar la percepción social. De esta forma, se logrará evidenciar que un material reciclado puede ofrecer seguridad, durabilidad y fiabilidad en la construcción.

Posteriormente, la investigación personifica un aporte originario que invita a especular la construcción a partir de un enfoque más responsable. El concreto reciclado no debe concebir solo como un suplente parcial del tradicional, sino como un mecanismo importante de un modelo constructivo más consecuente de su ambiente. Este permuta la visión esencial para avalar que la ingeniería civil en Ecuador avance hacia un futuro donde la técnica, la economía y la sostenibilidad estén siempre relacionadas.

RECOMENDACIONES

Siguiendo los objetivos particulares propuestos y apoyándose en los hallazgos de la investigación actual denominada "Análisis comparativo de la resistencia mecánica entre concreto con agregados reciclados de demolición y concreto tradicional", se sugiere que las compañías constructoras, tanto del sector público como privado, además de las entidades de supervisión, promuevan el empleo de agregados reciclados provenientes de construcción y demolición como reemplazos parciales o completos para los naturales en proyectos civiles. Esta práctica ayudará a reducir la recolección indiscriminada de áridos naturales, la acumulación de escombros y el impacto medioambiental creado por el sector de la construcción.

Además, se estima que el Servicio de Normalización Ecuatoriano y las autoridades competentes elaboren y fortalezcan una normativa técnica nacional que regule en detalle la producción, supervisión de calidad y uso del hormigón con agregados reciclados. Para ello, deben usar como base los estándares internacionales ASTM y ACI y ajustarlos a las propiedades específicas de los materiales disponibles en Ecuador para asegurar su durabilidad y seguridad estructural.

Asimismo, los estudios futuros deberían abarcar pruebas de permeabilidad, durabilidad, absorción capilar y comportamiento en ciclos de congelación-descongelación para ampliar el alcance experimental. Esto posibilitará entender el comportamiento del concreto con agregados reciclados a largo plazo bajo distintas circunstancias de carga y ambientales. Cuando se utilicen altos porcentajes de agregados reciclados, es conveniente mejorar el diseño de mezclas mediante la modificación de la proporción agua/cemento, el incremento del volumen de cemento o la incorporación de superplastificantes y aditivos que reduzcan el agua. Esto se realiza con el objetivo de reducir la porosidad, mejorar la cohesión y llegar a niveles de resistencia mecánica parecidos a los del hormigón convencional.

Se recomienda que estudios futuros examinen hormigones reciclados con resistencias por debajo de 400 kg/cm², puesto que el presente estudio se realizó con una resistencia más alta. Esto facilitará la evaluación de la viabilidad y el

comportamiento mecánico del empleo de agregados reciclados en estructuras con requerimientos de carga más bajos, lo cual se adecúa mejor a las condiciones reales de una gran parte de los edificios en Ecuador.

Se encomienda que los Gobiernos Autónomos Descentralizados Municipales creen e implementen políticas y programas orientados al reciclaje de residuos de construcción y demolición Al utilizar estos materiales reciclados en obras públicas e infraestructura, se reduciría la cantidad de escombros depositados en los botaderos, disminuyendo el impacto ambiental negativo que ocasionan. La estrategia promovería la economía circular en la industria de la construcción, maximizaría el uso de recursos y ayudaría a cumplir con los estándares de sostenibilidad establecidos por los acuerdos nacionales e internacionales.

Adicionalmente, se recomienda que investigaciones posteriores realicen un estudio de índole económica y ambiental para comparar el costo de producción del hormigón convencional con el del hormigón producido a partir de agregados reciclados. También permite calcular la reducción de las emisiones de CO₂ y el ahorro de recursos naturales que se logra al reciclar estos materiales. Para poder implementarlo, esta perspectiva completa reforzará el razonamiento técnico, económico y de sostenibilidad.

También se resalta la relevancia de impulsar programas de formación técnica orientados a ingenieros, constructores, maestros de obra y alumnos, que estén centrados en las prácticas adecuadas para el control de calidad, dosificación y manejo de agregados reciclados. De esta forma se asegura una uniformidad en los resultados y se promueve su aceptación en el ámbito profesional.

Al finalizar este proyecto de investigación, se pueden hacer varias recomendaciones que se consideran significativas y útiles tanto para los futuros investigadores como para los profesionales de la construcción que estén interesados en el tema del hormigón con los datos recopilados. Las sugerencias no son solo ideas técnicas; también son lecciones que aprendí a medida que avanzaba el proyecto, incluso cuando las cosas no iban según lo planeado.

A lo largo del desarrollo de este trabajo, se tuvo en cuenta que integrar la teoría y la práctica en cálculos y fórmulas, pero cuando están en el laboratorio o incluso pensando en cómo funcionaría esto en una obra real se cuenta que lo más valioso es intentar observar. Además, sería beneficioso hacer más pruebas comparativas en el futuro, no solo con preguntas sino también con elementos constructivistas reales que puedan rastrearse a lo largo del tiempo. Será beneficioso incluir entrevistas con maestros de obra o constructores que aporten su experiencia práctica, ya que están al tanto de cuestiones que ocasionalmente no aparecen en los libros.

Primero, recomiendo que en futuros ensayos de laboratorio se realicen pruebas con un mayor control en el curado de las probetas. En mi caso, aunque tratamos de ser lo más estrictos posible, me di cuenta de que pequeños descuidos en la humedad o en la temperatura pueden afectar mucho los resultados. Algo tan simple como abrir el tanque unos minutos más o menos, o no medir la temperatura del agua con precisión, puede hacer variar los datos. Por eso, considero que implementar sistemas más automatizados o con supervisión constante haría que los resultados sean más confiables.

Otra recomendación es que se explore más a fondo el uso de aditivos químicos. Yo noté que, al emplear el agregado reciclado, la mezcla tendía a absorber más agua, lo cual la volvía menos manejable. Esto en obra puede complicar mucho la colocación del hormigón. En ese sentido, el uso de superplastificantes, reductores de agua u otros aditivos podría mejorar notablemente la trabajabilidad sin necesidad de aumentar el cemento, que además encarece la mezcla.

También se recomienda dar un seguimiento del comportamiento del concreto en obra real, no solo en laboratorio. Es decir, construir un elemento pequeño (como una losa, una viga corta o un muro de prueba) con agregados reciclados y observar su desempeño con el paso de los meses. El laboratorio nos da una visión inicial, pero nada se compara con ver cómo se comporta en condiciones reales: lluvia, calor, cargas vivas, etc. Eso ayudaría a comprobar si los resultados que vimos en los cilindros se repiten en estructuras completas.

Por otro lado, pienso que sería muy útil continuar con estudios a diferentes porcentajes de sustitución, pero no solo en términos de resistencia, sino también de

durabilidad. Es decir, cómo se comporta el hormigón reciclado frente a la corrosión, frente a la carbonatación o frente a ciclos de humedad y sequedad. En la práctica, los ingenieros no solo pensamos en que resista 28 días, sino en que la estructura dure 20, 30 o 50 años.

Desde un punto de vista más práctico, recomiendo que las universidades y los municipios trabajen de la mano en la gestión de los RCD. En ocasiones se ha visto que en las demoliciones se bota todo el material mezclado: hierro, madera, ladrillo, hormigón, tierra. Esa falta de clasificación previa complica el reciclaje. Si desde el inicio se establecen brigadas o cuadrillas que separen los residuos, el material reciclado tendría mayor calidad y se reducirían impurezas que afectan a la mezcla. Esto además podría generar fuentes de empleo.

En el ámbito económico, recomiendo que se haga un análisis más detallado de costos. Durante este trabajo nos enfocamos mucho en la parte técnica, pero en la vida real un constructor siempre se pregunta si usar un material es rentable. Saber cuánto cuesta realmente producir y usar hormigón con agregado reciclado frente al convencional ayudaría a tomar decisiones más realistas.

Finalmente, recomiendo a los estudiantes que vengan después de nosotros que no se desanimen cuando algo no les salga bien en el laboratorio. A mí me pasó varias veces que una probeta se rompía antes de tiempo o que un ensayo daba un valor extraño. Al inicio pensé que era un error mío, pero luego entendí que forma parte del proceso. Cada error también enseña. Por eso, más allá de los números, este tipo de investigaciones son una experiencia personal que ayudan a crecer como futuros ingenieros.

También, este proyecto nos ha dejado mucho aprendizaje, el cual, como recomendación es que el concreto reciclado sí puede ser una opción válida, sin embargo, su uso debe estar acompañado de un cambio de mentalidad en la sociedad y en la misma industria de la construcción. No basta con tener resultados de laboratorio, también hace falta que los constructores confíen en estos materiales y que existan normativas claras que respalden su uso. Personalmente, me di cuenta de que la resistencia mecánica no lo es todo: también hay que pensar en la

sostenibilidad, en los costos y en la durabilidad a largo plazo. Esta investigación me mostró que un ingeniero no solo resuelve cálculos, sino que también debe tomar decisiones responsables que afectan al entorno y a las personas.

Por último, se recomienda examinar el uso de agregados reciclados en elementos no estructurales como adoquines, bloques, bordillos y componentes prefabricados para el mobiliario urbano. En estos casos las exigencias mecánicas son menores y la implementación es más rápida, lo que posibilitaría un mejor aprovechamiento de esos materiales y una mayor inserción en el mercado nacional.

Algo que también recomendaría es que se trabaje en campañas de concientización dirigidas a estudiantes y profesionales de la construcción. Muchas veces el tema de los agregados reciclados se queda solo en los libros o en los laboratorios de la universidad, y no llega a la gente que está en la obra todos los días. Si se organizaran talleres prácticos, demostraciones en campo o charlas en colegios técnicos, poco a poco se podría ir cambiando la mentalidad de que "lo reciclado no sirve". En mi experiencia, cuando uno ve con sus propios ojos cómo un material responde, se gana confianza y eso es clave para que en el futuro se use más este tipo de hormigón

La aplicación de estas recomendaciones promoverá el avance hacia un modelo de construcción más sostenible, eficiente y respetuoso con el medio ambiente, promoviendo tanto la preservación de los recursos naturales como la innovación en el diseño y uso de materiales en el campo de la ingeniería civil.

REFERENCIAS BIBLIOGRÁFICAS

- Abd Elaty, M. A., & Ghazy, M. F. (2012). Propiedades de flujo del hormigón fresco mediante el uso de un ensayo de corte de paletas geotécnico modificadoNota. HBRC Journal, 8(3), 159-169. https://doi.org/10.1016/j.hbrcj.2012.07.001
- Aditivos para hormigón. (2023, enero 5). Cómo ayudan los aditivos para hormigón al medio ambiente y su importancia dentro de un proyecto. MC-Bauchemie. https://www.mc-bauchemie.cl/noticias/press-release/especial-aditivos-para-hormigón.html
- Alisi, I. O., Musa, A., & Jacob, A. G. (2025). AVANCES RECIENTES EN LA QUÍMICA Y APLICACIONES DEL CEMENTO: UNA REVISIÓN. FUDMA JOURNAL OF SCIENCES, 9, 301-310. https://doi.org/10.33003/fjs-2025-09(AHBSI)-3452
- Amakye, S. Y., Abbey, S. J., & Olubanwo, A. O. (2021). Consistencia y propiedades mecánicas del hormigón sostenible mezclado con materiales cementantes de desecho de polvo de ladrillo. SN Applied Sciences, 3(4), 420. https://doi.org/10.1007/s42452-021-04430-w
- Ángel. (2014, diciembre 26). Ensayos a tracción del hormigón: Ensayos Indirectos. MÁS QUE INGENIERÍA. https://masqueingenieria.com/blog/ensayos-a-traccion-indirecta-del-hormigon/
- Antonio. (2022, febrero 17). Ecuador: La minería ilegal está acabando con dos ríos de la provincia de Napo. Noticias ambientales. https://es.mongabay.com/2022/02/ecuador-la-mineria-ilegal-esta-acabando-con-dos-rios-de-napo/
- ASTM C31—ACI Making and Curing Concrete Test Specimens. (s. f.). SI Certs. Recuperado 6 de agosto de 2025, de https://www.sicerts.com
- ASTM C39. (2022). Astm C39—Resistencia A La Compresion de Concreto | PDF | Fractura | Hormigón. Scribd. https://es.scribd.com/document/587155228/ASTM-C39-RESISTENCIA-A-LA-COMPRESION-DE-CONCRETO
- ASTM C128. (2023). Método de prueba estándar. https://store.astm.org/c0128-22.html

- ASTM D75. (2019, noviembre 12). Práctica estándar para el muestreo de agregados.

 ADVANCING STANDARDS TRANSFORMING MARKETS.

 https://store.astm.org/d0075_d0075m-19.html
- BARRERA TOSCANO, R. A., & MORA SUAREZ, J. J. (2024). ANÁLISIS DE LA RESISTENCIA A LARGO PLAZO DE ELEMENTOS DE CONCRETO ARMADO EXPUESTOS A CONDICIONES AMBIENTALES ADVERSAS. http://repositorio.ulvr.edu.ec/bitstream/44000/7636/1/T-ULVR-5737.pdf
- Bastidas Martínez, J. G., Rondón Quintana, H. A., Contreras Zartha, L., Forero Castaño, S., & Rojas, L. (2021). Evaluación de una mezcla de concreto asfáltico con incorporación de agregados reciclados de concreto. Revista UIS Ingenierías, 20(2), 75-84. https://dialnet.unirioja.es/servlet/articulo?codigo=9514532
- Beltrán Montoya, J. M., & Chica Osorio, L. M. (2018). Caracterización de residuos de demolición y construcción para la identificación de su potencial de residuo. ResearchGate. https://doi.org/10.15446/dyna.v85n206.68824
- CÁCERES ENCALADA, J. E., & GONZÁLEZ CÁRDENAS, C. S. (2024). ANÁLISIS MECÁNICO ENTRE UN HORMIGÓN TRADICIONAL Y HORMIGÓN CON ADICIÓN DE CENIZA DE CÁSCARA DE MANÍ. http://repositorio.ulvr.edu.ec/bitstream/44000/7630/1/T-ULVR-5731.pdf
- Carufel, S. D. (2020, junio 2). Field-Cured vs. Standard-Cured Cylinders: How They Affect Concrete Performance. Giatec Scientific Inc. https://www.giatecscientific.com/education/field-cured-vs-standard-cured-cylinders/
- Cemento Holcim Fuerte Ecoplanet. (2025). https://www.holcim.com.ec/cemento-holcim-fuerte
- Chávez Castillo, Á. A., & Burgos García, D. E. (2022). Características mecánicas del hormigón tradicional y hormigón no tradicional con agregado de fibra de acero [bachelorThesis, Guayaquil: ULVR, 2022.]. http://repositorio.ulvr.edu.ec/handle/44000/5740

- Concrelab. (2019, agosto 22). Paso a paso para compresión de cilindros de concreto.

 Concrelab. https://www.concrelab.com/paso-a-paso-para-compresion-de-cilindros/
- CONSTITUCIÓN DE LA REPÚBLICA DEL ECUADOR. (2008). CONSTITUCIÓN DE LA REPÚBLICA DEL ECUADOR. https://www.gob.ec/sites/default/files/regulations/2020-06/CONSTITUCION%202008.pdf
- Consuegra, L. L., & García, C. R. (2022). Factores que influyen en la resistencia a la compresión del hormigón. Estado del arte. Revista de Arquitectura e Ingeniería, 16(3),

 1-11. https://www.redalyc.org/journal/1939/193972950003/?utm_source=chatgpt.com
- Contreras-Llanes, M., Romero, M., Gázquez, M. J., & Bolívar, J. P. (2021). Recycled Aggregates from Construction and Demolition Waste in the Manufacture of Urban Pavements. Materials, 14(21), Article 21. https://doi.org/10.3390/ma14216605
- Curado del Concreto.pdf. (s. f.). Recuperado 6 de agosto de 2025, de https://col.sika.com/dam/dms/co01/e/Curado%20del%20Concreto.pdf?utm_sour ce
- Davila Pablo, M. C., Huaynalaya Rashuaman, M., Zapata Samata, J. M., & Jiménez Yabar, H. M. (2024). Elaboración del concreto con agregados reciclados para su utilización en la industria del premezclado. TecnoHumanismo, 4(2), 1-14. https://dialnet.unirioja.es/servlet/articulo?codigo=9862386
- De La Cruz, U. (2024, noviembre 7). Concreto Estructural vs. Convencional:

 Resistencia y Aplicaciones Clave | CUCMEX. Concreto Estructural vs.

 Convencional: Resistencia y Aplicaciones Clave.

 https://www.cucmex.com/blog/concreto-estructural-vs-convencional
- Diseño de mezclas de concreto ACI 211. (s. f.). SlideShare. Recuperado 5 de agosto de 2025, de https://es.slideshare.net/slideshow/diseo-de-mezclas-de-concreto-aci-211-pdf-ingenieroscivileswebcom/218905382

- Dosificación de Hormigones—Instituto del Cemento y del Hormigón de Chile. (s. f.). Recuperado 27 de julio de 2025, de https://ich.cl/unidades/07-dosificacion-de-hormigones/
- Elfakhrany, M. H., Zamrawi, A., Ibrahim, W., & Sherif, A. (2024). Estudio experimental sobre las propiedades mecánicas y el comportamiento estructural del hormigón de endurecimiento rápido. Journal of Engineering and Applied Science, 71(1), 74. https://doi.org/10.1186/s44147-024-00410-0
- Espín, J. A. C., & Obando, F. R. T. (2024). Estudio comparativo de las propiedades físico—Mecánicas de un hormigón elaborado con agregados gruesos de origen triturado y zarandeado. Polo del Conocimiento, 9(6), Article 6. https://doi.org/10.23857/pc.v9i6.7446
- Fernandez-Torrez, L. A., Aquino-Rocha, J. H., & Cayo-Chileno, N. G. (2022). Análisis de las propiedades físicas y mecánicas del residuo de caucho de neumático como reemplazo parcial del agregado fino en el hormigón. Hábitat Sustentable, 52-65. https://doi.org/10.22320/07190700.2022.12.02.04
- Francesca. (2024, septiembre 27). Understanding Construction and Demolition Waste: Types, Management, and Reduction Strategies. REDOL Project. https://www.redolproject.eu/understanding-construction-and-demolition-waste-types-management-and-reduction-strategies/
- Gestión del Amianto GDA. (s.f). RCD: Qué son, Clasificación, Normativa y Obligaciones | GDA. La Plataforma del Amianto de España. https://gestiondelamianto.com/rcd/
- HOLCIM. (s. f.). Agregados para Concreto | Tipos, Características y Aplicaciones. Recuperado 27 de julio de 2025, de https://www.holcim.com.mx/agregados
- Hormigón Reciclado, una solución ecológica para la construcción. (2023). Cemex Venture. https://www.cemexventures.com/es/hormigon-reciclado/
- Julián, C., Sergio M., A., & William, A. (2013). Propiedades mecánicas del concreto para viviendas de bajo costo. Ingeniería, Investigación y Tecnología, 14(2), 285-298. https://doi.org/10.1016/s1405-7743(13)72243-1

- Kaladharan, G., & Rajabipour, F. (2023). Evaluación del rendimiento de nuevos aditivos químicos inhibidores de la reacción álcali-sílice en sistemas cementosos. Journal of Materials in Civil Engineering, 35(9). https://doi.org/10.1061/JMCEE7.MTENG-15642
- Lara Pérez, R. A., & Mejía Lema, N. F. (2022). Prototipo de bloque utilizando viruta de madera, fibra de plástico de sorbete reciclado, ceniza volcánica para paredes en edificaciones [bachelorThesis, Guayaquil: ULVR, 2022.]. http://repositorio.ulvr.edu.ec/handle/44000/5635
- Nagaraj, A., & Girish S. (2021). Reología del hormigón fresco: Una revisión. Journal of Rehabilitation in Civil Engineering, 9(3), 118-131. https://doi.org/10.22075/jrce.2021.20557.1425
- Navarrete-Seras, M., Martinez-Molina, W., Chavez-Garcia, H. L., Sanchez-Calvillo, A., Arreola-Sanchez, M., Borrego-Perez, J. A., Perez-Castellanos, N. A., Ruiz-Torres, R. P., Duran-Ramos, A. M., & Alonso-Guzman, E. M. (2023, agosto). Influencia de la proporción de arena en las propiedades físicas y mecánicas de morteros para la edificación. Revista ALCONPAT, 13(2), 158-174. https://revistaalconpat.org/index.php/RA/article/download/684/1748?utm_source =chatgpt.com
- NTE INEN 696. (s. f.). GRANULOMETRÍA NTE INEN 696. SlideShare. Recuperado 7 de agosto de 2025, de https://es.slideshare.net/slideshow/granulometria-nte-inen-696/251239856
- OSORIO, J. D. (2022). Hidratación del Concreto 360enconcreto. 360 EN CONCRETO. https://360enconcreto.com/blog/detalle/hidratacion-del-concreto-agua-de-curado-y-agua-de-mezclado/
- Papamichael, I., Voukkali, I., Loizia, P., & Zorpas, A. A. (2023). Marco de la economía circular para los residuos de construcción y demolición: Una mini revisión. Waste Management & Research, 41(12), 1728-1740. https://doi.org/10.1177/0734242X231190804
- Pardo, N., Penagos, G., Correa, M., & López, E. (2023). Desarrollo de morteros de bajo impacto ambiental a partir de residuos sílico-aluminosos activados

- alcalinamente del sector minero. Boletín de la Sociedad Española de Cerámica y Vidrio, 62(1), 11-25. https://doi.org/10.1016/j.bsecv.2021.09.003
- Pavón, E., Etxeberria, M., & Martínez, I. (2011). Propiedades del hormigón de árido reciclado fabricado con adiciones, activa e inerte. Revista de la construcción, 10(3), 4-15. https://doi.org/10.4067/S0718-915X2011000300002
- Pérez, F. (2023). ¿Qué es la dosificación de concreto? [Categoría: Construcción]. Cementos Torices. https://cementostorices.com/blog/construccion/que-es-la-dosificacion-de-concreto/
- POYATOS. (2025, enero 3). ¿Qué considerar al elegir una mezcla de concreto? https://www.poyatos.com/blog/Que-considerar-al-elegir-una-mezcla-de-concreto
- Sacosa. (2023, noviembre 8). Tipos de arena para construcción. Sacosa. https://sacosa.es/tipos-arena-construccion/
- Salcedo Vera, B. A. (2020). Fabricación de un panel para tumbado a partir de poliestireno reciclado para vivienda de interés social en el sector del suroeste de la ciudad de Guayaquil [bachelorThesis, Guayaquil: ULVR, 2020]. http://repositorio.ulvr.edu.ec/handle/44000/3782
- Salinas Villegas, E. X., Vélez Niacato, A. M., Espín Lagos, S. M., & Freire Romero, D. R. (2023). Hormigón fresco y su incidencia en sus propiedades físicas y mecánicas. LATAM Revista Latinoamericana de Ciencias Sociales y Humanidades 4(2). https://doi.org/10.56712/latam.v4i2.959
- SE Chidiac, & O. Maadani. (2000). Control de la calidad del hormigón fresco: Un nuevo enfoque. ResearchGate. https://doi.org/10.1680/macr.2000.52.5.353
- Sika® Plastocrete® DM. (s. f.). Recuperado 5 de agosto de 2025, de https://ecu.sika.com/es/construccion/concreto/esenciales-para-concreto/sika-plastocretedm.html
- Silupu, J. W. E., Franco, J. E. F., Gutiérrez, R. E. B., & Pary, C. A. R. (2020). Efecto de la Utilización de Agregados de Concreto Reciclado sobre el Ambiente y la Construcción de Viviendas en la Ciudad de Huamachuco. Puriq, 2(1), Article 1. https://doi.org/10.37073/puriq.2.1.68

- Tenesaca Villacrés, J. L., & Flores Oñate, G. N. (2023). Fabricación de un prototipo de bloque a partir de arena de caucho, plástico PET y vidrio reciclados para el sector de la construcción [bachelorThesis, Guayaquil: ULVR, 2023.]. http://repositorio.ulvr.edu.ec/handle/44000/6090
- Trabajabilidad del Concreto. (2020). [Concepts and opinions]. reddit. https://www.reddit.com/r/Construction/comments/h8azlq/workability_of_concrete/?utm_source=chatgpt.com
- Velásquez, B. B. S., Pinargote, H. M. P., Cobeña, Á. W. V., & Dueñas, D. P. G. (2024).
 Reutilización de residuos de construcción en las empresas constructoras del Ecuador.: The reuse of construction waste in construction companies in Ecuador.
 Revista Científica Multidisciplinar G-nerando, 5(2), Article 2.
 https://doi.org/10.60100/rcmg.v5i2.266
- Zambrano Navarrete, L. D., Alava Santos, R. J., Ruíz Párraga, W. E., & Menéndez Menéndez, E. A. (2022). Aplicación de métodos de curado y su influencia en la resistencia a la compresión del hormigón. Gaceta Técnica, 23(1), 35-47. https://doi.org/10.51372/gacetatecnica231.4

ANEXOS

Anexo 1

Trituración

Se desarrollo la respectiva demolición del agregado reciclado para su uso en el Hormigon reciclado.

Anexo 2

RCD

Se realiza la respectiva selección de agregado reciclado para su respectivo tamizaje, y siguiendo su granulometría.

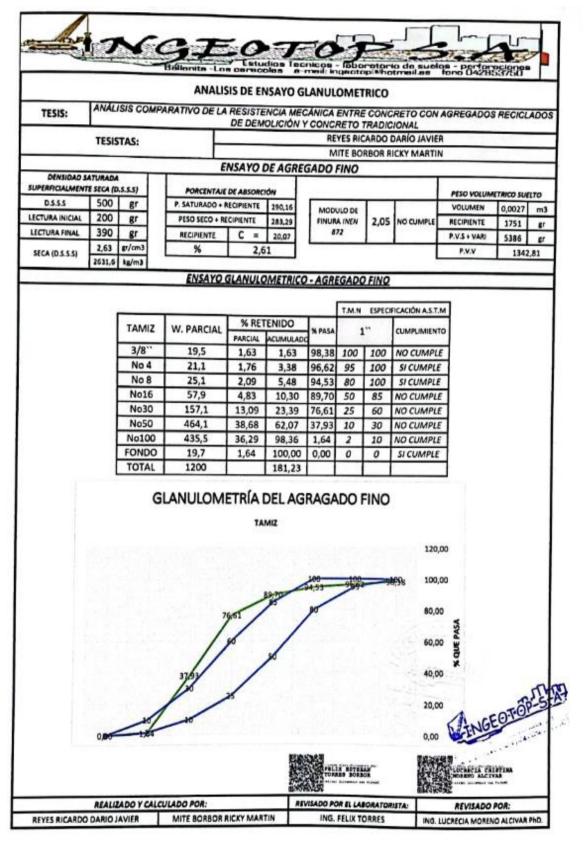
Anexo 3

Tamizaje

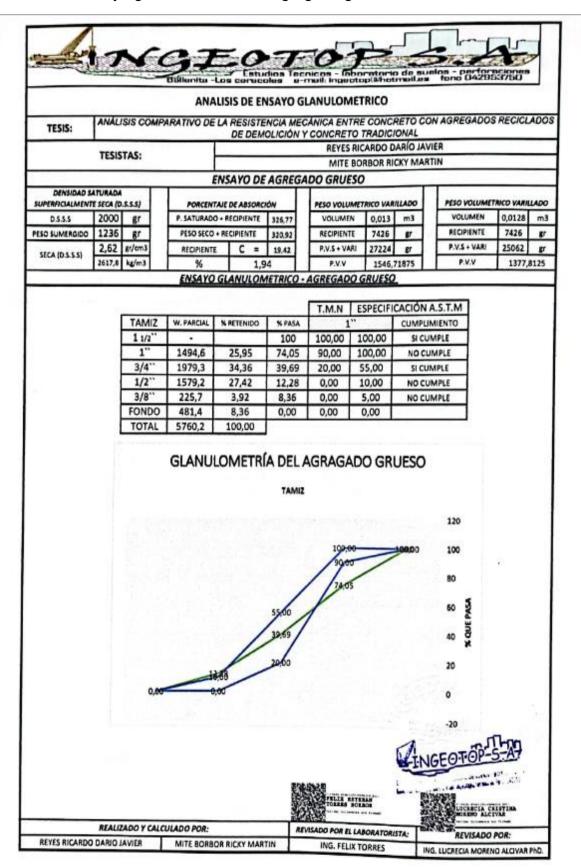
Se ejecutó su tamizaje para su separación de los tamaños de la piedra artificial.

Granulometría de los agregados

Se realizo el ensayo granulométrico del agregado fino.


Anexo 5

Granulometría de los agregados

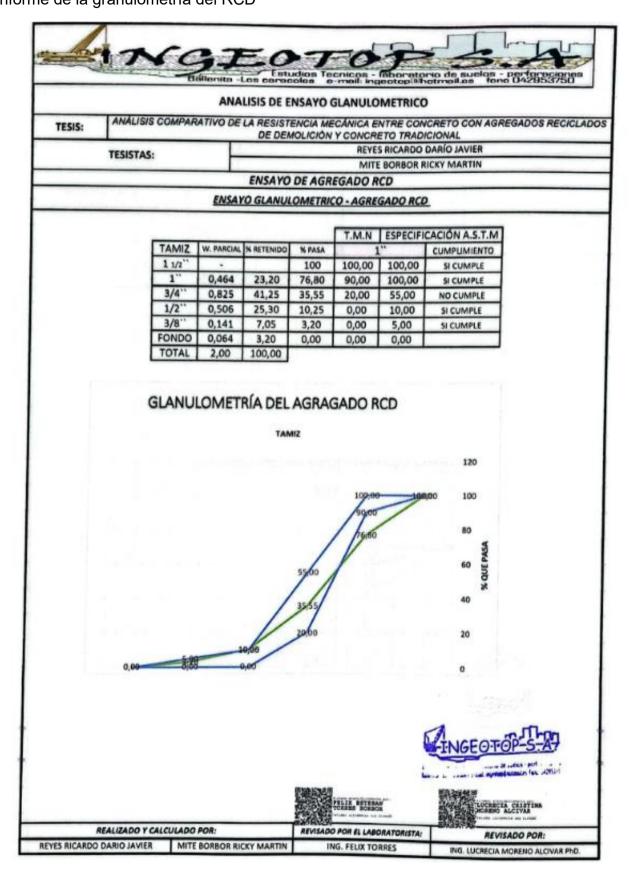

Se realizo el ensayo granulométrico del agregado grueso.

Anexo 6
Informe del ensayo Granulométrico del Agregado Fino

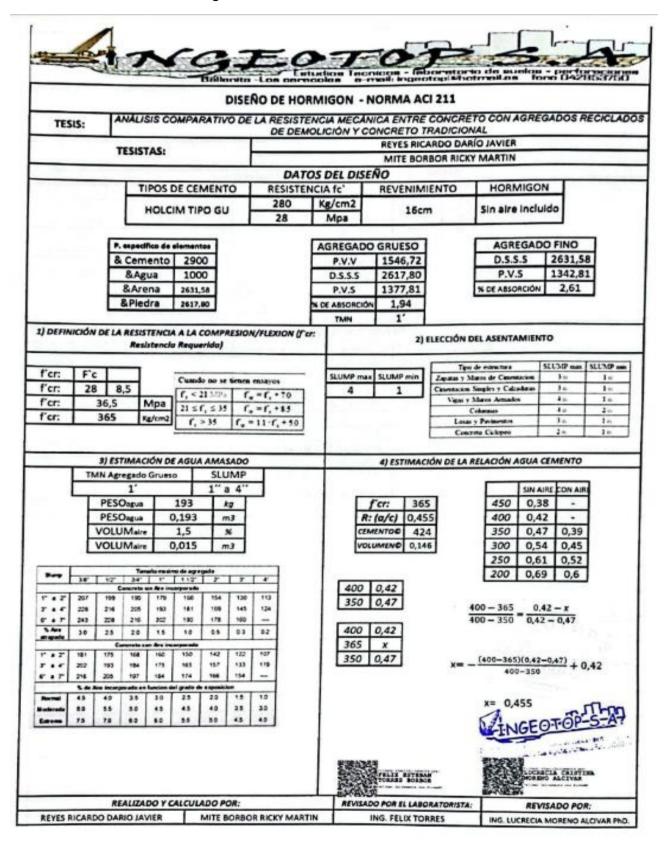
Anexo 7
Informe del ensayo granulométrico del Agregado grueso.

RCD

Se seleccionó una cierta cantidad de agregado reciclado para su respectiva granulometría.


Anexo 9

Granulometría de los agregados


Se realizo el ensayo Granulométrico con supervisión de la Ing. Lucrecia Moreno PhD.

Anexo 10
Informe de la granulometría del RCD

Informe del diseño del hormigón

Anexo 12
Informe del diseño del hormigón (parte siguiente)

f'c 280	_	zapo y o	CALCUI	_	.00 :w:	22	AFVISAD	NO POI	4 R EL LABORA	0,16	2	VISADO	0,18 POR:	
			_	-	00	2.0	7 1		4	0.16			0.10	¥ -
			Nº d	e Saco	s de Cemer	ito Ag	ins	N° C	ajonetas	H en cm	Nº Cajo	Are	Heno	-
					DOS	IFICACIÓN E	N CAJON	ETAS	Pled	73		-	London Street	_
8,5			0,192	5 0,7	9703901	0,4433565	/8 AREI	WA TO	,052 /	0,16 =	0,33 0,3			1
io de SACOS de			agus m	_	EDRA m3	ARENA ma	_	_	0,094 /		_	59 VA		3
W	DOSIFIC	_	_	_	CAR 1 m3			-	A		ONETAS (O,			
AGU	_	****		,5	22,7	Lts							U	
AREN	A	595,35	/ 8	,5	70,2	KE		A	GUA	1	22,7	400	22,7	
PIEDR		1098,2	/ 8	,5	129,4	Ke		_	RENA	70,2	/ 1342,8	81	0,052	
No Sacos (Co	mento	424	7 !	50 kg	8,5	SACO5		PI	EDRA	129,4	/ 1377,	81	0,094	
COEFICIE	NTE	424,18	1	50 kg		8,5	1	SACO	- CEMENTO	(0.4	* 0,4 *	0,2)	0,032	
CANTIO	AD DE	MATERI	IALES	POR CE	MENTO DE	50 KG	V	OLU	MEN DE I	MATERIAL	ES POR SA	CO DE	CEMENT	re
	AIRE	1	0,015	m	3			_[PESO KG P	OR ma DE HO	DAMISON	2310,	20	
1	Ag. Fin	0 0,2	22623	1 m	3				Ag. Flno	0,22623	2631,58	595,3	3	
	Ag. Grue	eso O,4	41950	1 "	13			4	g. Gruesa	0,4195	2617,8	1098,	2	
	CEMEN	TO 0,	14626	8 "	19			1	CEMENTO	0,14627	2900	424,	2	
	AGU		19251	_	13			Ì		0,19251	1000	192,		
	_	ial Vi		_	//3			1	A REAL PROPERTY AND ADDRESS OF THE PARTY AND A	A belief to the second of the second	PES (Kg/m3)			_
- 5	AGREG	ADOS P	OR M	3 DE H	ORMIGON		1				n3 DE HOR	RMIGO	v	-
						de agua	193	_	TABLA NO	_				
				1	/. de agres	ado grueso	_	_	TABLA NO					
						/c	0,45	_	TABLA NO	RMADA				_
					DA	TOS DE LAS	_	_	C.I					-
			TO	TAL	1		2310	69		1				
			-	RE	0,015		1		,	0,015				
			-	Fino	0,226	2631,578	-		595,35	0,22623				
			_	Trueso	0,420	2617,80	_	_	1098,17					
			CEM	ENTO	0,145	2900		_	424,18	_				
			-	SUA	0,193	1000	19	-	192,51	0.19251				
			Ma	terial	Vol(m3)	_		_		V (Corregido)				-
					6) DETER	MINACIÓN DI	EL VOLUI	MEN	DE ARENA					_
	PESO	AGUA		193	0,49]								
			TAS	ULADA	CORREGIO	A	_		-			-,-		
							2	_	0,78	0,76	0,72	0,7		
VOLAGgrueso I	w	0,4	420	m	9		1,5	_	0,75	0,73	0,71	0,6		
gruesovarillad	•	26	617,80)	1		1	_	0,71	0,69	0,67	0,6		
VOLAG	0),71	•	1546,7	2		3/		0,66	0,64	0,62	0,		
grussoverilled	0	&	Piedra				1/	_	0,59	0,57	0,55	0.5		
VOLAS	0	0,71		P.V.V	7		3/		0,5	0,48	0,46	0,4		-
de agregado gr	veso	0,71					TN	_	240	260	280	30	0 1	-
				5) (DETERMINA	CIÓN DEL VOL	UMEN DE							-
	IES	ISTAS:								R RICKY M				-
	TEE	ETAR			1	E DEMOLIC	ION Y C	_		DO DARÍO				_
TESIS:	ANA	LISIS C	OMPA	RATIV	ODELAR	ESISTENCIA	MECAN	WCA	ENTRE CO	ONCRETO	CON AGR	EGADO!	RECICI	A
				1	DISEÑO D	E HORMIC	ON - N	VOR	MA ACI	211				
				Scillen	ito -Los	Estudios	0-min	et in	(potopia	prio de s hotmas.	velge - p	"松翔?	257838°	
and the last		200	24-5-5-4			Account Control	100	ه.	AF	227	300	CONTRACT OF	3 3 3	7
- de	-		-	-		-	_	_			1	7		-
1	1		_		HEARING PRO	8		-						_

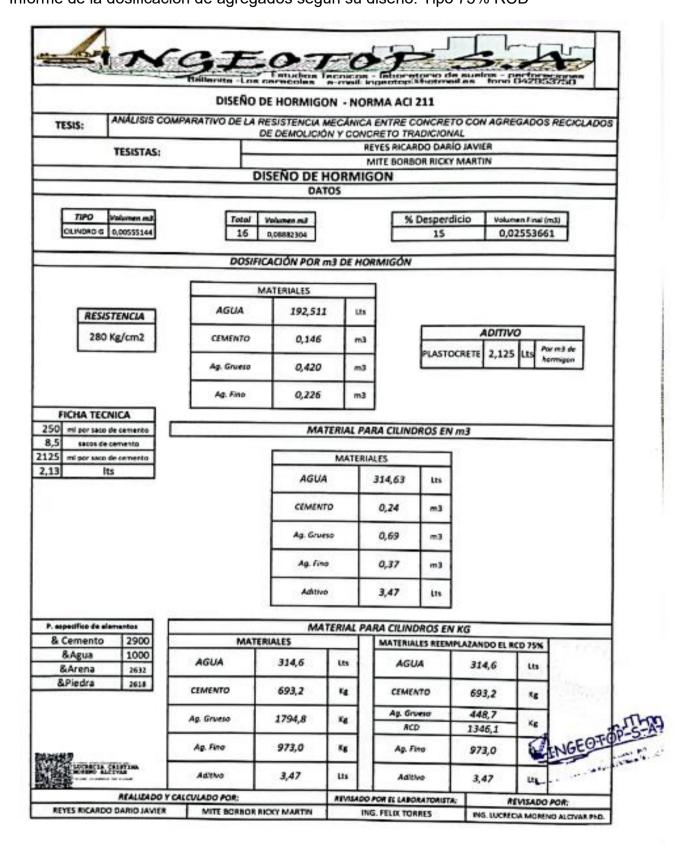
Anexo 13
Informe de la dosificación de agregados según su diseño. Tipo tradicional

- 4	Tool harry	Remonte	-Los caracol	en Te	enicos - fi med: inge	atopiator	er der w	e to	on DA	206377
		0000000000	O DE HORMI							
TESIS:	ANÁLISIS CO	MPARATIVO DE	LA RESISTENCI	A MEC		E CONCRE	TO CON	AGRE	GADOS	RECICLA
	TESISTAS:					CARDO DAR		R		_
						RBOR RICKY	MARTI	N		
			DISEÑO DI	ATOS	MIGON		_			
TIPO	Volumen md	Total		103		% Despero	dicio	Volume	n Final (s	-u I
CHINDR	0.00555144	10		1		15			214649	
		DO:	SIFICACIÓN PO	R m3 D	E HORMIGÓ	W		_	_	_
			MATERIALES		\neg	39			DITIVO)
RESIS	TENCIA	AGUA	192,	5	LES		PLASTO	CRETE	2,13	Lts Porm
280	Kg/cm2	CEMENTO	0,14	6	m3					
		Ag. Grues	0,42	0	m3					
		Ag. Fino	0,22	6	m3					
FICHA TECH	_									
50 mi por saco de sacos de sac			M	ATERIA	L PARA CILI	NDROS EN	m3			
25 mi por saco o				M	TERIALES					
13 It	,		AGU	JA.	314,63	Lts				
			CEME	NTO	0,239	m3				
			Ag. Gr	veso	0,686	m3				
			Ag. Fi	no	0,370	m3				
			Adle	vo	3,466	Lts				
, específico de ele	mentos		M	ATERIA	L PARA CILII	VDROS EN	KG		7	
& Cemento	2900	MA	TERIALES	700			19	-	4	
& Agua	1000	AGUA	314,6	Lts	1					
&Arena &Piedra	2618	CEMENTO	693,2	KE	1					7
		Ag. Grueso	1794,8	KE	1	6	ANG	EOT	Öp-	5-A-)
		Ag. Fino	973,0	Kg	PUBNISH	L	Bus		10	
		Aditivo	3,47	Lts		ER BUTTERN			BO ME	DVAR.
	REALIZADO Y CA	LCULADO POR:		REVIS	ADO POR EL LAS	ORATORISTA:	- BEE	REV	SADO P	OR:
REYES RICARDO	DARIO JAVIER	MITE BORBOS	RICKY MARTIN	1	ING. FELIX TO	ppre			_	ALCIVAR PH

Anexo 14

Informe de la dosificación de agregados según su diseño. Tipo 15% RCD

	N	G.F.	tatudos in carecolas	/ C	Ton fobore	torse de	aurica -	Pricipo	
			DE HORMIG						SO TOLO
TESIS:	ANĀLISIS CO	MPARATIVO DE L	A RESISTENCIA DE DEMOLICI					EGADO	S RECICLADOS
	TESISTAS:				REYES RICA				
-	16351763				MITE BORB	OR RICKY	MARTIN		
			DISEÑO DE		IIGON				
			D/	TOS					
CILINDRO G	O,00555144	Total	Volumen m3 0,06852304		%	Desperd 15		men Final 1021464	
		DOS	IFICACIÓN POR	m3 DE I	HORMIGÓN				
			MATERIALES						
RESIST	TENCIA	AGUA	192,51	1 1	its				
280 K	g/cm2	CEMENTO	0,146	,	m3	PLASTO	ADITII	5 100 "	or m3 de
		Ag. Grueso	0,420		n3		Chere 2,12	19 1	armigan
		Ag. Fino	0,226	n	n3				
FICHA TECN									
8,5 sacos de co			MA	TERIAL	PARA CILINE	RUS EN	m3		
125 mi por saco de				MATE	RIALES				
,13 Its			AGU	A	314,63	Lts			- 1
			CEMEN	70	0,24	m3			
			Ag Gru	eso	0,69	m3			- 1
			Ag. Fo	10	0,37	m3			
			Aditiv	0	3,47	tn			ı
				TERIAL	PARA CILINE	ROS EN	KG		
& Cemento	2900	MA	TERIALES				LAZANDO EL F	RCD 15%	
&Agua	1000	AGUA	314,6	Lts	AGU	A	314,6	Lts	
&Arena &Piedra	2632 2618	CEMENTO	693,2	κg	CEME	то	693,2	Kg	
	t	Ag. Grueso	1794,8	Kg	Ag Gn		1525,6 269,2	Ke	EDF'
2249	Ī	Ag. Fino	973,0	Kg	Ag. FI		973,0	19	NGEOTO
A PROPERTY.	INVINA IVAN	Aditivo	3,47	Lts	Aditi	vo.	3,47	Lts	
	REALIZADO Y C	CALCULADO POR:	10	REVISA	DO POR EL LABO	RATORISTA		EVISADO	POR:
REYES RICARDO			RICKY MARTIN		ING. FELIX TOR	238	INS. LUCRE	CIA MORE	NO ALCIVAR PND.


Anexo 15
Informe de la dosificación de agregados según su diseño. Tipo 25% RCD

	DISI	NO DE HORN	AIGON -		211			
LANALISIS CO		E LA RESISTEN				TO CON AG	REGADO	S RECICLADO
TESIS:	mr Albanio Di	DE DEMO	LICIÓN Y C	ONCRETO TE	RADICIO	NAL		
TESISTAS:				REYES RICA		Y MARTIN		
1000000		DISEÑO	DE HOR		DOM NOCE	ii ara-attus		
			DATOS					
TIPO Volumes and	-	tal Volumes mil		[9	Desper	dicio I vo	umen Fina	(ma)
CIUNORO 6 0.00555144	_	16 0,08882304	-	-	15		102146	
							Negarigio.	PODEN.
	DO	DSIFICACIÓN P	OR m3 DE	HORMIGON			_	
		MATERIALES						
RESISTENCIA	AGUA	192	511	Lts				
	0.000000	970 1 200				ADITI	vo	
280 Kg/cm2	CEMENT	0,1	46	m3	PLAST	OCRETE 2,12	SHIPS	Por m3 de
	Ag. Grue	10 0,4	20	m3	-			hormigan
	Ag. Find	0,2	26	m3				
250 mi por saco de cemento			MATERIAL	PARA CILINE	DONE EA	l m2		
8,5 secos de cemento		- '	FIM FERINE	PARA CILINA	MUS EN	ins		
125 mi por seco de cemento			MAT	ERIALES	_			
2,13 its		AG	UA	314,63	Lts	ľ		
		con	ENTO	0,24	m3	Š		
		CEM	ENIO	0,24	ma			
		Ag. G	irueso	0,69	m3			
			53					
			irueso Fina	0,69	m3 m3			
		Ag	53					
		Ag.	Fina Tiva	0,37 3,47	m3 Lts			
		Ag.	Fina Tiva	0,37 3,47 PARA CILIND	m3 Lts	ALC: NO.		
P. específico de elementos & Cemento 2900 & Agua 1000		Ag. Adi	Tivo	0,37 3,47 PARA CILIND MATERIAL	m3 Lts ROS EN	KG PLAZANDO EL I	RCD 25%	
	MJ AGUA	Ag.	Fina Tiva	0,37 3,47 PARA CILIND	m3 Lts ROS EN	ALC: NO.	ICD 25%	
& Cemento 2900 & Agua 1000		Ag. Adi	Tivo	0,37 3,47 PARA CILIND MATERIAL	m3 Lts ROS EN ES REEMI	314,6	Lts	9.19
& Cemento 2900 & Agua 1000 & Arena 2632	AGUA CEMENTO	Ag. Adi NATERIALES 314,6 693,2	Tivo MATERIAL Lts Kg	0,37 3,47 PARA CILIND MATERIAL AGUI	m3 Lts ROS EN ES REEMI	314,6 693,2		Oth I
& Cemento 2900 & Agua 1000 & Arena 2632	AGUA	Ag. Adi	Tivo ATERIAL Lts	0,37 3,47 PARA CILIND MATERIAL AGU	m3 Lts ROS EN ES REEMI	314,6 693,2 1346,1	Lts Kg	Dan Stanf
& Cemento 2900 & Agua 1000 & Arena 2632	AGUA CEMENTO	Ag. Adi NATERIALES 314,6 693,2 1794,8	TIVO MATERIAL Lts Kg Kg	O,37 3,47 PARA CILIND MATERIAL AGU. CEMEN Ag. Gru- RCD	m3 Lts ROS EN ES REEMI A TO	314,6 314,6 693,2 1346,1 448,7	Lts Kg	- 20
& Cemento 2900 & Agua 1000 & Arena 2632	AGUA CEMENTO Ag. Grusso	Ag. Adi NATERIALES 314,6 693,2	Tivo MATERIAL Lts Kg	0,37 3,47 PARA CILIND MATERIAL AGU. CEMEN Ag. Grov	m3 Lts ROS EN ES REEMI A TO	314,6 693,2 1346,1	Lts Kg	GEOT OF

Anexo 16
Informe de la dosificación de agregados según su diseño. Tipo 50% RCD

TESIS: ANALISIS	DISER							
TESIS: ANALISIS		O DE HORMI						
	COMPARATIVO DE I	LA RESISTENCI	A MECAN	CA ENTRE C	CONCRE	TO CON AG	REGADO	OS RECICLADO
		DE DEMOLIO	NON Y CO	NCRETO TR	ADICION	IAL		
TESISTAS	* F			MITE BORE				
		DISEÑO DE	HORN		OR RICK	MARTIN	_	
			ATOS					
Trong Land			10					
CILINDRO IS 0,00535144	Tota			%	Despero	ficio Voi	umen Fina	(tml)
CICHEND 6 0,00333164	16	0,08512304	S		15	0,	102146	496
	DO:	SIFICACIÓN POI	R m3 DE I	IORMIGÓN	_			
								-
		MATERIALES						
RESISTENCIA	AGUA	192,5	11	ta				
280 Kg/cm2	CEMENTO	0,14	6	13		ADITI	TI	Par m3 de
	Ag. Gruese	0,42	0 1	13	PLASIC	CRETE 2,12	S Lts	hormigon
	Ag. Fino	0,22	6 ,	3				
FICHA TECNICA 250 mi por saco de cemento			7.7					
8,5 sacos de cemento		м	ATERIAL	PARA CILINE	ROS EN	m3		
125 ml par seco de cemento			MATE	RIALES	$\overline{}$			
,13 Its		AGU			T.			
		700	<i>-</i>	314,63	Lts			
		CEME	NTO	0,24	m3			
		Ag. Gr	veso	0,69	m3			
		Ag. Fi	_	0.33	\vdash			
		~~	ano	0,37	m3			
		Adm	Ivo	3,47	lts			
P. especifica de elementos		M	ATERIAL	PARA CILIND	DOC EN	×0		
& Cemento 2900	MA	ATERIALES				LAZANDO EL	ern sow	
&Agua 1000	AGUA	314,6	Lts	AGU		DOZZOWENYA NA		
&Arena 2632 &Piedra 2638			1	AGU		314,6	Lts	1
& Piedra 2518	CEMENTO	693,2	KE	CEMEN	ro	693,2	Kg	100
	Ag. Grueso	1794,8	Kg	Ag Gru		897,4 897,4	14	
	Ag. Fino	973,0	Kg	Ag. Fir		973,0	A.	VGEO FOR
DESCRIPTION OF THE PERSON	Aditivo	3,47	Lts	Advis		3,47	Lts	
100000	A STATE OF THE PARTY OF THE PAR							

Anexo 17
Informe de la dosificación de agregados según su diseño. Tipo 75% RCD

Anexo 18
Informe de la dosificación de agregados según su diseño. Tipo 100% RCD

		Dice	Oo pr upp		es argeotop	whatm	ones for	10 D421	HORSZENCI
Tree.	ANALISIS	OMPARATIVO DE	NO DE HORN	MIGON - I	NORMA AC	211			
TESIS:			DE DEMOL	JCIÓN Y C	ONCRETO TO	CONCRE	TO CON AG	REGADO	OS RECICLAD
	TESISTAS:				REYES RICA				
			DIEFFOR		MITE BOR	BOR RICK	Y MARTIN		
			DISEÑO	DATOS	MIGON				
				DATOS	_	_		_	
TIPO	Volumen mit	_	tol Volumen mJ		8	Desper	dicio vo	lumen Fine	(m3)
CILINDRO 6	0,00555144	1	6 0,08882304			15			
		DO	SIFICACIÓN P	OR m3 DE	HORMIGÓN				
					_				
94		10000	MATERIALES		_				
RESI	STENCIA	AGUA	192	511	Lts				
280	Kg/cm2	CEMENT	0 0,1	146	m3		ADIT	IVO	
		Ag. Grue	10 0.4	20	mi	PLASTO	OCRETE 2,1	25 Lts	Por m3 de harmigan
				-					
		Ag. Fine	0,2	26	Em				
FICHA TEC									
mi por saco				MATERIAL	PARA CILINI	DROS EN	m3		
mi por saco sacos de mi por saco	de camento				PARA CILINI ERIALES	DROS EN	m3		
mi por saco sacos de mi por saco	de camento cemento			MATI	ERIALES		m3		
mil por saco sacos de mil por saco	de cemento cemento de cemento					Uts DROS EN	m3		
mi por saco sacos de mi por saco	de cemento cemento de cemento		A	MATI	ERIALES		m3		
sacos de mi por saco	de cemento cemento de cemento		AC	MATI	78,66	its	m3		
sacos de mi por saco	de cemento cemento de cemento		AG. G	MATI SUA SENTO	78,66 0,060	Lts m3	m3		
sacos de mi por saco	de cemento cemento de cemento		Ag. CEM	MATI SUA IENTO Srveso	78,66 0,060 0,171	its m3 m3	m3		
mi por saco sacos de mi por saco	de cemento cemento de cemento ts		Ag. C	MATI SUA TENTO Sirveso Fino	78,66 0,060 0,171 0,092 0,867	its m3 m3 m3			2017e
mi por saco sacos de mi por saco li	de cemento cemento de cemento ts	M	Ag. G	MATI SUA TENTO Sirveso Fino	78,66 0,060 0,171 0,092 0,867	its m3 m3 m3 Lts	KG		30Th
mi por sacos de mi por saco mi por saco li pedifice de ele Cemento &Agua	de cemento cemento de cemento ts	203630537	Ag. (Ag. (Ag. Ad. Ad. Ateriales	MATI SUA TENTO Srveso Fino Itivo	78,66 0,060 0,171 0,092 0,867 PARA CILIND	m3 m3 m3 Lts	KG LAZANDO EL I		59Te
mi por sacos de mi por sacos de mi por saco	de cemento de cemento ts amentos 2900 1000 2632	M. AGUA	Ag. G	MATI SUA TENTO Sirveso Fino	78,66 0,060 0,171 0,092 0,867	m3 m3 m3 Lts	KG	RCD 100%	2017m
mi por sacos de mi por sacos de mi por sacos de mi por saco la composição de electro de	de cemento de cemento ts amentos 2900 1000	203630537	Ag. (Ag. (Ag. Ad. Ad. Ateriales	MATI SUA TENTO Sirveso Fino Itivo	78,66 0,060 0,171 0,092 0,867 PARA CILIND	m3 m3 m3 Lts	KG LAZANDO EL I		Porm3 de Asrmigon
mi por sacos de mi por sacos de mi por saco	de cemento de cemento ts amentos 2900 1000 2632	AGUA	Ag. GAg. Ag. Ad. Ad. Ad. Ad. Ad. Ad. Ad. Ad. Ad. Ad	MATI SUA SENTO Serveso Fino Serveso MATERIAL Lts	PARA CILING MATERIAL AGU CEMEN	Lts m3 m3 Lts PROS EN REEMP	KG LAZANDO EL 1 78,7 173,3	its Kg	
mi por sacos de mi por saco mi por saco li pedifice de ele Cemento &Agua &Arena	de cemento de cemento ts amentos 2900 1000 2632	ÁGUA CEMENTO Ag. Grueso	Ag. 6 Ag. 6 Ag. 6 Ag. 7 Adateriales 78,7 173,3 448,7	MATI	78,66 0,060 0,171 0,092 0,867 PARA CILING MATERIAL AGU CEMEN	Lts m3 m3 Lts PROS EN REEMP	KG LAZANDO EL 1 78,7 173,3	Volumen Finel (m3) 0,02553661 DITIVO 2,125 Lts Form3 de Asrmigon EL RCD 100% Lts Kg Kg	- 60
mi por saco sacos de mi por saco	ementos 2900 1000 2632 2618	ÁGUA	Ag. 6 Ag. 6 Ag. 6 Ag. 7 Adams	MATI	PARA CILING MATERIAL AGU CEMEN	Lts m3 m3 m3 Lts PROS EN RESPENSEMP	KG LAZANDO EL 1 78,7 173,3	its Kg	Forms de harmigan

Elaboración de cilindros.

Se realizó el pesaje de los agregados siendo respectivamente cuidadoso para no exceder lo mencionado.

Anexo 20

Mezcla de los agregados.

Anexo 21Aditivo que se utilizó para la ejecución del hormigón.

Anexo 22Mezcla del material para el hormigón

Anexo 23

Colocación de hormigón a los respectivos cilindros, este se realiza en 3 capas.

Anexo 24

La varilladas correspondientes al momento de colocar las capas de hormigón.

Anexo 25Terminación de la elaboración de los cilindros

Anexo 26

Desencofrar

Los cilindros terminados se mueven al lugar para realizar su respectiva limpieza de los moldes y obviamente desencofrar.

Limpieza de cilindros

Una vez los cilindros terminados, tiene que pasar 24hr para poder desencofrar, en la cual se realizo el desencofrado y limpieza de los cilindros utilizados.

Anexo 28

Colocar los cilindros en la piscina.

El respectivo curado de los cilindros según su edad, colocación de los cilindros en la piscina con agua hasta el borde del cilindro.

Anexo 29

Ensayo a compresión tradicional.

Resultados del laboratorio de los ensayos a compresión. Mezcla patrón.

Kg/cm2			784	8	AT23	OVITICIA J3 3 DT A OGNAM	ino		E, NOS DAMO OT A OGNAN		·	AT23	OVITIDA J OT A OUN				
DISEÑO 280 kg/cmi	WAS CALL	ALD PAUL	PORCENTALE			68'95		12.13.13.23	65'98	FU	11		05'901	ALCTATION ALCTANA	de 100%		R PhD.
		S P		_		Kg/cm2			Kg/cm2		Ġ.		Zm3/8		entaje	22	LCIVA
DISEÑ	Grand	Ing. CISNEROS FARINO RONALD PAUL	PROMEDIO			159,30			242,44		NOED TO		298,21		lias un parc	REVISADO POR:	A MORENO A
DE LA RESISTENCIA MECÁNICA ENTRE CONCRETO CON AGREGADOS RECICLADOS DE DEMOLICIÓN Y CONCRETO TRADICIONAL		Ing. CISNE		RESISTENCIA	159,67	160,06	158,19	242,17	243,09	242,06	Ī	297,88	308,42	288,34	70%, y por último a los 28 días un parcentaje de 100%	N.	ING. LUCRECIA MORENO ALCIVAR PhD.
nos ne ne		TUTOR	ROTURA	CARGA	276,2	280,01	279,5	433,0	435,2	436,2		538,9	550	\$12,5	70%, y por t	L	L
ECICIA	F	-		EDAD	3	m	m	_	-	7		28	28	28	e 60% a		
EGADOS R		2		FECHA	10-jul	10-jul	10-jul	14-jul	14-jul	14-jul		4-980	4-ago	4-ago	orcentaje d	ATORISTA	2
CON AGRE		KY MARTII	PESO	kg	12304	12504	12250	12690	13150	12898		13195	12803	13016	7 dias un p	REL LABOR	ING. FELIX TORRES
ONCRETO	ייייייייייייייייייייייייייייייייייייייי	MITE BORBOR RICKY MARTIN	ABEA	(cm2)	176,39	178,396	180,175	182,322	182,562	183,761		184,482	181,844	181,247	30% a 40%,	REVISADO POR EL LABORATORISTA	ING.
ANICA ENTRE CONCRETO CONCRETO TRADICIONAL	OWCAETOTA	MITE	ALTURA	(cm)	30,45	30,44	30,35	30,04	30,01	29,99		30,54	30,08	30,35	ebemos obtener a las 3 días un porcentaje de 30% a 40%,7 días un porcentaje de 60% a		
ENCIA MECA	1		(cm)	Promedia	14,99	15,075	15,15	15,24	15,25	15,3		15,33	15,22	15,195	a los 3 días un		WITGERS OF
LA RESIST		IRÍO JAVIER	AMETRO CLINDRO (cm)	D2	14,85	14,90	15,05	15,22	15,30	15,27		15,39	15,29	15,18	os obtener		ATTE BORROR RICKY MARTIN
		DO DARÍO J	DIAMET	10	15,13	15,25	15,25	15,26	15,20	15,33		15,27	15,15	15,21	furo debem	CLIKADO POR	MITTE
ANÁLISIS COMPARATIVO		REYES RICARDO DA	FECHA DE	VACIABO	7-jul	7-jul	7-jul	7-jul	7-jul	7-jul		7-jul	7-jul	7-jul	MOTA: Durante el proceso de roturo d	BEAUZADO Y CALCULAD	IAVAED
ANALIS			H		-	2	m	-	2	m		-	2	8	o o o tuo	NF.	000000000000000000000000000000000000000
TESIS:		TESISTAS:	DENTHCACION OF	CILINDRO	TESIS	TESIS	TESIS	TESIS	TESIS	TESIS		TESIS	TESIS	TESIS	MOTA. D		OSKIAL CHORN CHORNING

Anexo 30
Ensayo a compresión - 15%.

Resultados del laboratorio de los ensayos a compresión. 15% RCD.

	Kgy/kmr.	9		*	N. Company	ATM3U. A GAGI	SOMAG SON TZZ OVITIGA J JATOTA COMA	One e	y:	SOMAG SON S3 OVITIGA J ATOTA OGNA	SI CUMPLE,		AT23	OVITIGA .	OUMPLE, I		П
. н	┒	15% RCD			PORCENTAJE		09'99			LS'#8	an-on		11	EE'90T	105	de 100%	240
	DISENO			Г	9		Kg/cm2			Kg/cm2		40		Zm2/g)	100	entaje	4 2
	_	TIPO			PROMEDIO		186,49			236,81			No.	27,782		s un porce	REVISADO POR:
DOVEGEOUS OUR	JON Y CONCRE				RESISTENCIA	183,74	189,62	186,11	231,11	242,63	236,67	1	292.28	301,13	77,662	70%, y por último a los 28 días un porcentaje de 100%	REVISADO POR: ING. LUCRECIA MORENO ALCIVAD PLO
T. Co. store	JE DEMOLIC			ROTURA	CARGA	323,8	334,6	328,4	419,2	427,3	421,5		530,8	542,3	5'665	70%, y por úl	1
4000	ADOS [+			EDAD	3	m	т	7	_	7		28	78	28	60% a	
00000	OS RECICI		2		FECHA	28-jul	28-jul	28-jul	31-jul	31-jul	31-jul		14-ago	14-ago	14-ago	rcentaje de	TORISTA
ACDECAD	AGREGAD		CKY MART	PESO	kg	12590	12641	12621	13150	12910	13098	-	12872	12984	12983	dias un po	O POR EL LABORA ING. FELIX TORRES
DETO COM	ONA!	The state of the s	MILE BURBOR RICKY MARTIN	AREA	(cm2)	179,7	179,937	179,937	184,964	179,581	181,605	101 101	183,205	183,641	183,521	de 30% a 40%,7 días un porcentaje de 60% a	REVISADO POR EL LABORATORISTA ING. FELIX TORRES
A FIVTRE CONC.	TRADICIONAL TRADICIONALE CONCRETA DE DEMOLICION Y CONCRETO	The state of the s		ALTURA	(cm)	30,2	30,15	30,18	30,5	30	30,29	., 00	30,14	30,26	30,12	porcentaje	RE
A MATCANIC		r		(un)	Promedio	15,13	15,14	15,14	15,35	15,125	15,21	26.36	95,51	15,295	15,29	a los 3 días un	MARTIN
ESISTENC		IAVIER		ETRO GUNDRO (cm)	20	15,15	15,13	15,14	15,4	15,1	15,25	1 5	15,43	15,32	15,32	s obtener a	DO POR: MITE BORBOR RICKY MARTIN
ODELAR.		SDO DARÍO		₹I	10	15,11	15,15	15,14	15,3	15,15	15,17	95 35	6,61	15,27	15,26	ıra deberno	MITE BC
ANALISIS COMPARATIVO DE LA R		REYES RICARDO DARÍO IAVIFR		FECHA DE	AMENDE	25-jul	25-jul	25-jul	24-jul	24-jul	24-jul	17 in	Inf-/T	luį-71	17-jul	NOTA: Durante el proceso de rotura debemos obtener	RIO JAVIER MITE B
ALISIS C				ž		-	2	т.		7	m	1	7	2	6	inte el pi	DARIO I
	IESIS:	TESISTAS:		DENTIFICACION DE		TESIS	TESIS	TESIS	TESIS	TESIS	TESIS	TEGIC	253	TESIS	TESIS	NOTA: Duro	REVES RICARDO DARIO JAVIER

Anexo 31

Ensayo a compresión - 25%.

Resultados del laboratorio de los ensayos a compresión. 25% RCD.

STICATIO DE LA RESISTENÇIA MECANICA ENTRE CONCRETO CON AGREGADOS RECICLADOS DE DEMOLICIÓN Y CONCRETO CONCRETO CON GREGADOS RECICLADOS DE DEMOLICIÓN Y CONCRETO DATO DE LA RESISTENCIA METANICA	11/	9	6	MILL	1		0		0	h	٨	W		San San Prop		
Table Tabl	₹	VALISIS	COMPARATI	3	RESISTENC	IA MECANI	CA ENTRE CON TRADIL	CCRETO CON	AGREGA	DOS RECIC	ADOS	DE DEMOL	ICIÓN Y CONC	\perp	E PO	280 14/0
1 25-jul 15,23 15,11 15,12 30,05 183,041 12675 126-jul 15,24 3 339,0			REYES RICA	ARDO DARÍC	MANIER		M	TE BORBOR R	UCKY MAR	NIT	H					
u 15,25 15,11 15,18 30,11 180,889 12539 28-jul 3 329,0 185,47 196,60 187,442 12675 28-jul 3 386,5 204,18 196,60 187,442 12675 28-jul 3 386,5 204,18 196,60 187,442 12675 126,0 180,413 12770 31-jul 7 483,7 244,89 248,20 180,175 12700 11709 115,18 15,18 15,18 15,18 15,18 15,18 15,18 15,18 180,413 12785 14-apo 28 289,2 299,28 180,175 12800 14-apo 28 529,2 299,28 180,175 12800 14-apo 28 529,2 299,28 180,180 180,442 12876 14-apo 28 529,2 299,28 180,000 12789 14-apo 28 529,2 299,28 180,180 180,442 12876 14-apo 28 529,2 299,28 180,000 12789 14-apo 28 529,2 299,28 12876 14-apo 28 529,2 299,28 12876 12876 14-apo 28 529,2 299,28 12876	2		FECHA DE	DIAM	ETRO CUNDA	to (cm)	ALTURA	AREA	689	L	1	ROTURA			ŀ	ŀ
15,23 15,11 15,24 15,245 30,04 182,442 12675 28-jul 3 356,5 204,18 196,60 20 20 20 20 20 20 20	-	I	VACIABO	10	20	Promedie	(cm)	(cm2)	ķ	FEDIA	EDAD	CMGA	MESSTENCIA	PROMED	8	1
15,23 15,21 15,24 15,245 30,05 183,041 12675 29-jul 3 366,5 204,18 196,60 120,001 15,2 15,24 15,24 125,2	- 1	-	25-jul		15,11	15,18	30,1	180,889		28-jul	m	329,0	185,47			ATMBOD
15,29 15,2 15,15 15,15 29,95 180,175 12840 31-jul 7 444,3 251,46 180,175 12840 31-jul 7 444,3 251,46 180,175 12840 31-jul 7 444,3 251,46 180,175 12840 31-jul 7 432,7 244,89 248,24 180,175 12840 180,413 12795 31-jul 7 439,2 248,24 259,28 248,24 25,24	1 1	7	25-jul		15,21	15,27	30,05	183,041	$\overline{}$	28-jul	m	386,5	204,18	196,60		SOWYO SON
15,1 15,1 15,1 15,15 15,15 180,175 12840 31-jul 7 444,3 251,46 248,20 5 5 5 5 5 5 5 5 5	1 1	m	25-jul		15,2	15,245	30,04	182,442		28-jul	-	358,1	200,15			H CONNECT I
u 15,21 15,12 15,12 30,51 180,413 12795 31-jul 7 432,7 244,89 248,24	1 1	-	24-jul	15,2	15,1	15,15	29,9	180,175	12840	31-jul	1	44.3	251,46		_	Y
u 15,24 15,24 15,25 15,245 30,64 182,442 12876 14-ago 28 539,3 301,32 302,58	1 1	2	24-jul	15,1	15,2	15,15	29,95	180,175	12770	31-jul	7	487	244,89	248,20	0.70.70	SOMAG SO
u 15,24 15,25 15,245 30,54 182,442 12876 14-ago 28 539,1 301,32 302,58	1 1		24-jul		15,14	15,16	30,01	180,413	12795	31-jul	1	439,2	248,24			11 100 N 714 M N
15,24 15,25 15,245 30,64 182,442 12876 14-ago 28 539,1 301,32 302,58 5 5 5 5 5 5 5 5 5	1 1	-	17-jul	15,21	15,11	15,16	30,51	180,413		14-ago	22	\$85	299,28	哟.		VINIO
17-jul 15,34 15,28 15,31 30,55 184,001 12789 14-ago 28 554,2 307,13 207,		2	17-jul	15,24	15,25	15,245	30,64	182,442	12876	14-ago	82	1,952	301,32	302,58		SOWYS SO
PY CALCULADO POR: ALVELADO POR EL LABORATORISTA MITE BORBOR RICKY MARTIN ING. FELIX TORRES ING. 11/25/20 A 2005.	1 15	m l	17-jul	3	15,28	15,31		184,001	12789	14-ago	82	584.2	307,13			ON ET
MITE BORBOR BICKY MARTIN ING. FELIX TORRES	<u> </u>	aronce a	FALIZADO Y CAL	0 20	os obtener	0 105 3 0105		REVISADO POR	7 dias un p	Orcentaje d	e 9009 a	70%, y por u	ttimo a los 28 d	as un porcent	taje de 10	NO.
	3	IDO DAR	O JAVIER	MITE	SORBOR RIC	KY MARTIN		ING	FELIX TORRE	2	l	\downarrow	MG HICEGO	VEADO POR		

Anexo 32

Ensayo a compresión - 50%.

Resultados del laboratorio de los ensayos a compresión. 50% RCD

	280 Kg/cm2	9		ľ	200	1	OS DAMAG SO ATOTA DOI ATOTA DOI	מחו נו					OUE EL	- 1		O SOMAG SO TREE OVITION	11 ton	~ I	7	Т
A.		SO% RCD			PORCENTAL		95'08				12 %	۷5 ′ ۲0	T E	20.00	1	₹ 2′91		\neg	- Took	
R)	DISEÑO	TIPO	1		8		S/cm2	К	╛			gws/8	ж	4	1	Zm2/g	×	H	o e o	
CASH DEPORT		F			PROMEDIO		225,58				_	301,19	3	,	N.	326,88		No.	s on porcen	REVISADO POR
id - niopo	DE LA RESISTENCIA MECANICA ENTRE CONCRETO CON AGREGADOS RECICIADOS DE DEMOLICIÓN Y CONCRETO				RESISTENCIA	228,02	224,01	224,72		301,84		300,39	301,32		335,07	321,27	324,29	imo a los 36 do	and a second of the second of	REVISADO POR:
	ре ремог			ROTURA	CARGA	389,7	388	388,2		547,5		543,1	546,2		£,862	578,2	\$80,2	70% y now ult		1
	MDOS			ł	EDWO	3	m	m	1	1	1	7	-	1	82	82	82	60% 0 7		1
****	OOS RECIC		NI	L	FEOW	28-jul	28-jul	28-jul		31-jul		31-jul	31-jul		14-ago	14-ago	14-180	⊣ક	1	
	AGREGAL		ICKY MART	0534	35	12568	12396	12425		13040		13150	13098	1	12650	12894	12784	dias un por	I LABORAT	NG. FELIX TORRES
	RETO CON	IONAL	MITE BORBOR RICKY MARTIN	AREA	(cm2)	174,278	176,625	176,154		184,964		184,362	184,843		182,083	183,521	182,442	0% a 40%,7	REVISADO POR EL LABORATORISTA	ING. FE
	A ENTRE CONC	IRADICIONAL	HM	ATURA	(cm)	30,7	30,6	30,67		30,5		30,2	30,31		30,15	30,24	30,19	debernos abtener a las 3 días un porcentaje de 30% a 40%,7 días un porcentaje	AREI	
	A MECANIC	Ī		O (cm)	Promedie	14,9	a a	14,98		15,35		15,325	15,345		15,23	15,29	15,25	las 3 días un		MARTIN
	ESISTENC		JAVIER	DIAMETRO CILINDRO (cm)	0.5	14,93	15,03	15,01		15,4		15,35	15,38		15,25	15,28	15,23	obtener a		MATE BORBOR RICKY MARTIN
			RDO DARÍO JAVIER	DIAM	ă	14,87	14,97	14,95		15,3		15,3	15,31		15,21	15,3	15,26	ra debernos		MITE BO
	ANÁLISIS COMPARATIVO		REYES RICARI	FEON DE	VACIABO	25-jul	25-jul	25-jul		24-jul		24-jul	24-jul		17-jul	17-jul	17-jul	ceso de rotu	REALIZADO Y CALCULA	VIER
	ALISISC		İ	2	1	-	7	·	t	-	r	7	m	ŀ	-	2	- m	nte el pro	MEALL	DARIO JA
	TESIS: AW	TEGISTAS.	ESISTAS:	IDENTIFICACION DE		TESIS	TESIS	TESIS		TESIS		TESIS	TESIS		TESIS	TESIS	TESIS	NOTA: Durante el proceso de rotura		REYES RICARDO DARIO JAVIER

Anexo 33

Ensayo a compresión - 75%.

Resultados del laboratorio de los ensayos a compresión. 75% RCD

1	2000	Ţ	ŀ	See S	dAdt.	T23 OVITIGA	13 30	D EUNCI	T			OVITIDA DI A ODI			1	. 1	153	OVITIGA DT A OQI	111	inn	T	Γ
- 62	75% 8/	13000		PORCENTAJE	ATM3U	22,12		COMP	5	ATNBU	0.50	TO,01.			1000		950	Z9'61		ACCOUNT OF	٦.,	
Diction		7	T	_		Zm2/8	K		1			g/cm2	К		F			g/cm2	K		tole	
L	_			PROMEDIO		229,95					_	308,20			100			334,93	田本学及の日		as un porcer	REVISADO POR:
RESISTENCIA MECANICA ENTRE CONCRETO CON AGREGADOS RECICIADOS DE DEMOCICIÓN Y CONCRETO	יייייייייייייייייייייייייייייייייייייי			RESISTENCIA	229,80	228,42		231,63		309,96		311,73		302,91		337,51		331,56		335,71	70%, y por último a los 28 días un porcentale de 100%	RE
	A DEIMOLI		Adition	CARGA	403,9	412,7		415,5		551,3		8'055		538,4		610,2		601,4	00/68/57	603	70%, y por úi	
	1500	\vdash	+	EDAD	т.	т.	11	m	1	7		7		7		28		28		28	60% a	
	OS NECICE	2		FECHA	28-jul	28-jul		28-jul		31-jul		31-jul		31-jul	W 000 00	14-ago		14-ago		14-ago	rcentaje de	TORISTA
	HONEGAD	CKY MARTI	PESO	, k	12628	12629		12625		12640		12510		12578		13115		13092		13427	días un po	O POR EL LABORA
	ONAL	MITE BORBOR RICKY MARTIN	AREA	(cm2)	179,225	184,241		182,921		181,366		180,175		181,247		184,362		184,964		183,161	de 30% a 40%,7 días un porcentaje de 60% a	REVISADO POR EL LABORATORISTA
	TRADICIONAL	MITE	ALTURA	(cm)	30,26	30,09		30,15		29,9		30,5		30,12		30,51		30,35		30,41	emos obtener a los 3 días un porcentaje de	R
			(cm)	Promedio	15,11	15,32		15,27		15,2		15,15	Ī	15,195	Ì	15,33	Ì	15,35	1	15,28	los 3 días ur	
STATE OF THE PARTY		RÍO JAVIER	AMETRO GLINDRO (cm)	D2	15,14	15,29		15,25		15,2		15,2		15,21		15,43		15,38		15,32	s obtener o	DO POR:
3		RDO DARÍO	DIAME	10	15,08	15,35		15,28		15,2		15,1		15,18	Ī	15,22		15,32		15,23	ura debemo	VIADO POR:
S S CALLERY LINES CO.		REYES RICARDO DA	FECHA DE	VACIADO	25-jul	25-jul		25-jul		24-jul		24-jul		24-jul		17-jul		17-jul		17-jul	NOTA: Durante el proceso de rotura deb	REALIZADO Y CALCULADO
CICITE			3		-	2		m		-		2		m		п		2	İ	в	urante el p	REA
	Sist	TESISTAS:	DENTIFICACION DE	CHINDRO	TESIS	TESIS		TESIS		TESIS		TESIS		TESIS		TESIS		TESIS		TESIS	NOTA: De	DENTE BUTABLO DABOO MARE

Anexo 34

Ensayo a compresión - 100%.

Resultados del laboratorio de los ensayos a compresión. 100% RCD

	Kg/cm2	co		ľ	See A	GAG	AT23	OVITIGA OT A OQU	13			1	/153	OVITIGA	113	AUMOST SUE FUNCION	5-		AT23	OWAG 20 OVITIGA OT A QQI	13 :	one	T	I	
fono 042953750	280	100% RCD			PORCENTAJE	1	15 30	84,48		3 IONI IS		ATMI		£0'90		THE	Æ	-1		86'77		-	_	2007	
I	DISEÑO	o		r				g/cm2	K		1			g/cm2	K		F	1		g/cm2	K		7		
		TIPO		L	PROMEDIO			236,54						296,87	1-0		1			349,95	田田 かいかい		S LID DOLLO	1	KEVISADO POR:
	THE STATE OF THE CANDING A ENTRE CONCRETO CON AGREGADOS RECICLADOS DE DEMOLICIÓN Y CONCRETO				RESISTENCIA	243,11		231,83		234,68		304,53		289,21		296,88	7	357,52		340,04		352,28	imo a los 28 dia	150	KEVISADO POR:
P DEMOLIC	1			ROTURA	CARGA	434,1		420,5		421,8		531		511		521,1		631,7		604,4		624,5	'0%, y por últ		
	ADOS	ŀ	_	-	EDAD	m	1	m		е		7		7		7		28		28		28	60% a 7		
	OS RECICL		z		FECHA	28-jul		28-jul		28-jul		31-jul		31-jul		31-jul		14-ago		14-ago		14-ago	rcentaje de	TORISTA	
	AGREGAD		CKY MARTI	PESO	kg	12795		12969		12898		12490		12740		12685		12483		12561		12741	dias un po	EL LABORAT	
	RETO CON,	DNAL	MITE BORBOR RICKY MARTIN	AREA	(cm2)	182,083		184,964		183,281		177,804		180,175		178,988		180,175		181,247	Ī	180,77	0% a 40%,7	REVISADO POR EL LABORATORISTA	
	A ENTRE CONC	INADICIONAL	MITE	ALTURA	(cm)	30,66		30,65		30,64		30,3		30,2		30,24		30,13		30,24		30,16	NOTAL Durante el proceso de rotura debemos obtener a los 3 dias un porcentaje de 30% a 40%, 7 días un porcentaje de 60% a 70%, y por último a las 28 dias un norcentaje de 30% a 40%.	RE	
				(am)	Promedio	15,23		15,35		15,28	Ì	15,05		15,15		15,1	1	15,15	l	15,20	l	15,18	los 3 días un		********
			DARIO JAVIER	DIAMETRO CILINDRO (cm.)	22	15,09		15,24		15,18		15,1		15,1		15,08	Ī	15,15	Ī	15,21		15,12	s obtener a		AATT BOOM BOOM STATE
			- 1	DIAME	10	15,37		15,46		15,38		15		15,2		15,12		15,15		15,18		15,23	ura debemo	ULADO POR:	AAITE DA
		DEVEC DICA	KETES KICAKDO	FECHA DE	- Automoti	25-jul		25-jul		25-jul		24-jul		24-jul		24-jul		17-jul		17-jul		17-jul	oceso de rot	REALIZADO Y CALCULA	AVIER
2				ž	1	-		2		m		-		7		6			1	7	-	е .	d le el p	REA	O DARIO
	TESIS:	TESISTAS:	2000	DENTIFICACION DE		TESIS		TESIS		TESIS		TESIS		TESIS		TESIS		TESIS		TESIS		TESIS	NOTA: Dur		REYES RICARDO DARIO JAVIER

Anexo 35
Ensayo a tracción indirecta (método brasileño)

Resultados del laboratorio de los ensayos a tracción indirecta. Mezcla patrón.

50Gs	78ADICIONAL	INE. CISNEROS FARIÑO RONALD PAÚL	*	PORCENTAJE		8),08	s		S77.2	is ·	15.57A			Dencis Olivina	
33%	DISEÑO	NO RO	Γ			Kg/cm2	-		Kg/cm2	J'a	10	1	-	43	SEASON A
6429	<u> </u>	ROS FARIL		PROMEDIO		19,60			28,99	(0)	OE OF OF	1	iii4	oresidn p	REVISADO POR
Estudios Tecnicos - faborotorio de suelos - perferecions como de 2353750	MOLICIÓN Y	Ing. CISNE		RESISTENCIA	21,76	18,92	18,12	30,82	30,20	25,95	-			NOTA: Durante el proceso de rotura debemos abtener a los 7 y 28 días un parcentaje entre 8% al 12% de la resistencia del ensayo a compresión 🚉	REV
to de s	ag ag sog	TUTOR	ROTURA	CARGA	152,4	121,2	127,1	215,2	7,012	182,0	П	П		esistencia de	
State	PECICLA	F	+	EDAD	7	-	_	28	78	78	7	10		% de la	
fabor	EGADOS	2		FECHA	14-jul	14-jul	14-jul	4-ago	4-ago	4-960				re 8% of 12	TORISTA
nicos nad: in	CON AGR	DKY MART	PESO	g	12734	12820	12789	12732	12433	12530		$\lceil \cdot \rceil$		entaje entr	EL LABORA
os Teer	CONCRETO	MITE BORBOR RICKY MARTIN	AREA	(cm2)	180,413	178,632	179,7	178,751	178,988	183,281				dios un porc	REVISADO POR EL LABORATORISTA
Corocole	ANALISIS COMPARATIVO DE LA RESISTENCIA MECÁNICA ENTRE CONCRETO CON AGREGADOS RECICLADOS DE DEMOLICIÓN Y CONCRETO TRADICIONAL	MITE	ALTURA	(cm)	30,01	30,08	30,11	30,05	30,01	29,81				ner a los 7 y 28	RE
	ENCIA MEC		fem)	Promedio	15,16	15,09	15,13	15,09	151	15,28	П	П	ŀ	ebernos obte	
١	LA RESIST	JAVIER	DIAMETRO CILINDRO (cm.)	DZ	15,14	15,12	15,16	25	15,1	15,43	П		Г	de rotura d	
	RATIVO DE	RDO DARÍO JAVIER	DIAME	10	15,18	15,05	15,1	15,18	15,1	15,13	П			el proceso	CULADO POR:
	ISIS COMPA	REYES RICARD	FECHA DE	VACIABO	7-jul	7-jul	7-jul	7-jul	7-jul	7-jul			·	JTA: Duront	REALIZADO Y CALCUI
	ANAL		,	+	-		-		-	-	-	\vdash	 -	×	REAL
	TESIS:	TESISTAS:	DENTIFICACION DE	CILINDRO	TESIS	TESIS	TESIS	TESIS	TESIS	TESIS					

Ensayo a tracción indirecta (método brasileño) - 15%.

Resultados del laboratorio de los ensayos a tracción indirecta. 15% RCD

Kg/0m2	8		13	es o		CUMPLE	s		CUMPLE	ıs			1	1	П
280	15% RCD			ORCENTALE		65'8			10,04		8	FI I		C TOOL	
DISEÑO	TIPO		۳	_		Kg/cm2			Kg/cm2		E		1		
TO DI				PROMEDIO		20,35			29,88		18.			resides	REVISADO POR
VO DE LA RESISTENCIA MECÁNICA ENTRE CONCRETO CON AGREGADOS RECICLADOS DE DEMOLICIÓN Y CONCRETO DISEÑO				RESISTENCIA	20,45	20,54	20,06	29,96	30,09	29,58		SNEW STANS		ensayo a comp	REVISADO POR:
DE DEMOLIC			ROTURA	CARGA	147,0	142,7	142,4	208,3	210,2	202,2				esistencia del	Ц
ADOS			-	EDAD	7	~	_	88	78	82				6 de la re	
OS RECICI		z		FECHA	31-jul	31-jul	31-jul	14-ago	14-ago	14-ago				e 8% al 129	ORISTA
AGREGAD		CKY MARTI	0534	kg	12944	12585	12752	12535	12654	12674				entaje entr	D POR EL LABORAT
RETO CON	DNAL	MITE BORBOR RICKY MARTIN	AREA	(cm2)	182,203	177,45	180,413	177,686	178,159	179,344				las un porc	REVISADO POR EL LABORATORISTA
בייות בטורה	TRADICIONAL	MITE	ALTURA	(cm)	30,65	30,01	30,42	30,01	30,12	30,1		П		e el proceso de rotura debemos obtener a los 7 y 28 días un porcentaje entre 8% al 12% de la resistencia del ensayo a compresióra	REI
5			(un)	Promedio	15,235	15,04	15,16	15,045	15,065	15,115	$ \cdot $	H	-	spemos opter	МАВТИ
SISTENCIA		JAVIER	DIAMETRO GLINDRO (on)	03	15,2	15,03	15,18	15,04	15,1	11,21	П	П		le rotura de	OG POR:
		RDO DARÍO JAVIER	DIAME	10	15,27	15,04	15,14	15,05	15,03	15,12		П		el proceso (MITE RO
ANALISIS COMPARATIVI		REYES RICAS	FECHA DE	VACIABO	24-jul	24-jul	24-jul	17-jul	17-jul	17-jul				NOTA: Durante	YCE
ALISIS			2		п	7	m		2	6	\Box		-	×	REAL
TESIS: AN		TESISTAS:	IDENTIFICACION DE	CILINDRO	TESIS	TESIS	TESIS	TESIS	TESIS	TESIS	$\left[\cdot \right]$				REALIZADO REVES BICARDO DARIO LAVIER

Anexo 37

Ensayo a tracción indirecta (método brasileño) - 25%.

Resultados del laboratorio de los ensayos a tracción indirecta. 25% RCD

Folom?	7 CD CD		,	Tanks O		CUMPLE	IS	П	CUMPLE	IS	5	D is	i.	1	П
280	280 Kg/	4000		PORCENTAL		£0,8			£5'6	95	T,	9-5-1			
DISENO.	TIPO	1	İ			Kg/cm2			Zm2/8X	5	3 A	5	2		
P0 _	_	1		PROMEDIO		19,94	31		28,85			ENGEOTOP-S	100	presión	REVISADO POR:
A RESISTENCIA MECANICA ENTRE CONCRETO CON AGRECADOS RECICIADOS DE DEMOLICIÓN Y CONCRETO	ION Y CONCRE			RESISTENCIA	19,50	19,48	20,84	29,02	29,01	28,51	.	9 : i		oceso de rotura debemas obtener a los 7 y 28 días un porcentaje entre 8% al 12% de la resistencia del ensayo a campresión en	REVISADO POR:
P. DEMONIC	E DEMOCIC		Adimo	CARGA	5,651	140,2	148,8	203,0	204,1	201,2		П		esistencia d	1
A SOUA	a coop	H	╣.	CDAC	7	_	7	82	58	82				% de la	1
OS RECICI	NS MECICLO			FECHA	31-jul	31-jul	31-jul	14-ago	14-ago	14-ago			,	re 8% al 12	TORISTA
GREGAD	CAECAD	XY MARTI	936	39	12902	12830	12901	12488	12532	12341				centaje ent	POR EL LABORAT
SETO CON A	ONAL	MITE BORBOR RICKY MARTIN	484	(cm2)	182,562	183,761	183,041	179,106	180,651	182,203				dias un por	REVISADO POR EL LABORATORISTA
ENTRE CONC	TRADICIONAL	MITE	ALTURA	(cm)	30,48	30,56	30,37	30,08	30,12	30,09				mer a los 7 y 28	
5		r	(cm)	Promedio	15,25	য	15,27	15,105	15,17	15,235	H			lebernos obte	MARTIN
SOFFICE		ARIO JAVIER	NAMETRO CILINDRO (cm.)	20	15,18	15,34	15,26	15,05	15,21	15,23	П	П		de rotura a	ITT BORBOR BICKY MARTIN
JUE LA RE		DO DARIO	DIAME	10	15,32	15,26	15,28	15,16	15,13	15,24	П			el proceso	MITER
ANALISIS COMPARATIVO DE L		REYES RICARDO DA	FECHA DE	VACIABO	24-jul	24-jul	24-jul	17-jul	17-jul	17-jul	$\lceil \cdot \rceil$			NOTA: Durante el proceso	AVIER
4LISIS CC			Н	ž	-	7	m		2	m	H			N	O DARBO L
33	TESIS:	TESISTAS:	DOWNFICACION DE	CHINDRO	TESIS	TESIS	TESIS	TESIS	TESIS	TESIS					REYES INCARDO DARIO JAVIER

Anexo 38

Ensayo a tracción indirecta (método brasileño) - 50%.

Resultados del laboratorio de los ensayos a tracción indirecta. 50% RCD

	Kg/cm2	9		13	San Constitution		COMPLE	ON		CUMPLE	ON		8.0		2	
A :	280	50% RCD		_	PORCENTALE		06'S			06,7		E. C.	200		TO TO LOT	
Ma	DISEÑO	o					Zm2/g/			(g/cm2	1/2	- 6	5	37		2
W and	70 DIS	TIPO		L	PROMEDIO		17,71			23,86	0.5%		TNGE OFFOR	2	esidne	REVISADO POR:
Jod - Bo	ÓN Y CONCRETO DISEÑO				RESISTENCIA	18,13	17,51	17,69	23,88	23,59	24,11	4		,	ensayo a compr	REVISADO POR:
nus ab orativadal - aconon	E DEMOLIC			ROTURA	CARGA	128,7	121,8	125,5	171,1	168,9	172,4	Н	Н		sistencia del	
1	ADOS [1	_	\mathbf{I}	EDAD	7	1	7	82	82	82			-	delare	
	OS RECICI		z		FECHA	31-jul	31-jul	31-jul	14-ago	14-3go	14-ago				8% of 12%	DRISTA
900	4GREGAD		CKY MARTI	PESO	, Ke	12565	12381	12458	12970	12893	12856			-	ntoje entre	O POR EL LABORATO
-	RETO CON,	ONAL	MITE BORBOR RICKY MARTIN	MEA	(cm2)	184,121	172,644	181,009	182,442	183,161	181,963		П		las un porce	REVISADO POR EL LABORATORISTA
Estudios	DE LA RESISTENCIA MECÁNICA ENTRE CONCRETO CON AGREGADOS RECICIADOS DE DEMOLICIÓN Y CONCRETO	TRADICIONAL	MITE	ALTURA	(cm)	30,11	30,47	30,35	30,53	30,45	30,51		П		proceso de rotura debemos obtener a los 7 y 28 días un porcentaje entre 8% al 12% de la resistencia del ensayo a compresión	KEV
D 5407- 41	A MECANICA	ľ		(cm)	Promedie	15,315	ä	15,185	15,245	15,275	15,225	$ \cdot $	\mathbb{H}	-	bemos obtene	MARTIN
Siller	ESISTENCIA		JAVIER	DIAMETRO CLINDRO (cm)	20	15,31	14,74	15,22	15,28	15,32	15,32	П	П		e rotura de	MITE BORBOR BICKY MARTIN
Ī		1	RDO DARÍO JAVIER	DIAME	10	15,32	14,92	15,15	15,21	15,23	15,13	П	Н		o broceso d	21
	ANÁLISIS COMPARATIVO		REYES RICAR	FECHA DE	VACIABO	24-jul	24-jul	24-jul	17-jul	17-jul	17-jul	$\left \cdot \right $	$ \cdot $		NOTA: Durante el	AER
	ALISIS O		t	ž	1	7	7	m	-	7		Н	Н	-	NO	DARIO IA
	TESIS: AND	-	IESISTAS:	DENTIFICACION DE	- Canada	TESIS	TESIS	TESIS	TESIS	TESIS	TESIS					REYES RICARDO DARIO JAVIER

Anexo 39

Ensayo a tracción indirecta (método brasileño) - 75%

Resultados del laboratorio de los ensayos a tracción indirecta. 75% RCD

Kolom2	9		13	See		COMPLE	ON		CUMPLE	ON					П
280	1.			PORCENTAJE		81'9			۲0′۲		歷			ALC:N	
DISEÑO	1100	1	\vdash	_		Kg/cm2			Zm2/8)	1/9	高	1	35		7
L				PROMEDIO		19,99			23,69	9	TE STORY OF		à	resión	REVISADO POR
ANÁLISIS COMPARATIVO DE LA RESISTENCIA MECÁNICA ENTRE CONCRETO CON AGREGADOS RECICIADOS DE DEMOLICIÓN Y CONCRETO				RESISTENCIA	21,27	17,58	21,11	23,64	24,05	23,37	·			NOTA: Durante el proceso de rotura debemos obtener a los 7 y 28 dias un porcentaje entre 8% ol 12% de la resistencia del ensayo a compresión PARIZADO Y CALCILADO DOB-	REVISADO PER UNA
PEDFMOUN			ROTURA	CARGA	151,7	122,8	150,4	168,7	171,3	165,3		П		esistencia de	1
ADOS		-	+	EDAD	7	_	7	82	78	28				6 de la r	
OS RECICI		Z		FECHA	31-jul	31-jul	31-jul	14-ago	14-ago	14-ago				e 8% of 12	ORISTA
AGREGAD		CKY MART	PESO	kg	12933	12168	12899	12692	12782	12623		$\lceil \cdot \rceil$,	entaje entr	ING FEITY TORRES
RETO CON	ONAL	MITE BORBOR RICKY MARTIN	AREA	(cm2)	181,605	178,751	181,725	182,801	183,161	181,963				tias un porc	ING FELIX TORRES
ENTRE CONCI	TRADICIONAL	MITE	ALTURA	(cm)	30,45	30,07	30,42	30,37	30,29	30,18				ner a los 7 y 28 a	2
MEGANIC			(cm)	Promedio	15,21	15,09	15,22	15,26	15,275	15,225		\Box		ebemos obte	MARTIN
SISTENCIA		JAVIER	DIAMETRO CLINDRO (cm)	20	15,17	15,07	15,25	15,26	15,23	15,21	П	П		de rotura d	MITE BORBOR RICKY MARTIN
ODELAR		NDO DARÍO JAVIER	DIAME	10	15,25	15,11	15,18	15,26	15,32	15,24	П	П		el proceso	MITE BC
OMPARATIV		REYES RICARDO	FECHA DE	VACIABO	24-jul	24-jul	24-jul	17-jul	17-jul	luį-71				NOTA: Durante el proceso	AVIER
MISSS CO			5		п	2	e .	-1	2	т.	-			NC	O DARIO J
TECH. AN	П	TESISTAS:	IDENTIFICACION DE	CELINDRO	TESIS	TESIS	TESIS	TESIS	TESIS	TESIS					REYES RICARDO DARIO JAVIER

Anexo 40
Ensayo a tracción indirecta (método brasileño) - 100%

Resultados del laboratorio de los ensayos a tracción indirecta. 100% RCD

	Ka/an2	g		Took	8	UMPLE	00	N		CUMPLE	ON				1	П
A:	280	100% RCD		ORCENTALE		69'	9			99'∠		THE STATE	1:		STREET ST	
W	DISEÑO	2		_		/cm2	Kg			Zm2/8/	17	- 4		1		
V a	10 DI	F		PROMEDIO		19,87				26,80			NIGEOTO	ž.	reción	REVISADO POR:
nogodby d - sol	IÓN Y CONCRE			ACMITTAGE AND A	22,95	15,47		21,19	26,81	27,02	26,57				ensavo a como	REVISADO POR:
all horizontal see	DE DEMOLIC			ROTURA	163,4	8'011	1	151,4	192,7	193,5	189,4	П			esistencia del	Ц
	ADOS [H	\dashv	EDAD	7	7		~	82	78	88				6 de la re	
	OS RECICI			BECHA	31-jul	31-jul		31-jul	14-ago	14-ago	14-ago				e 8% al 129	ORISTA
	CON AGREGADOS RECIC	TO MAN DE	AT MAKI	PESO - 24	12498	12478		12482	12891	12873	12921				ntaje entr	O POR EL LABORAT
	RETO CON,	MITE BOBBOB BICKS MARTIN	n nognog	AREA (cm2)	181,009	182,322		181,844	184,602	183,161	183,041				lias un porce	REVISADO POR EL LABORATORISTA ING. FELIX TORRES
	LA RESISTENCIA MECÁNICA ENTRE CONCRETO CON AGREGADOS RECICLADOS DE DEMOLICIÓN Y CONCRETO	MITEROPE		(cm)	30,45	30,53		30,49	30,44	30,45	30,32	П			NOTA: Durante el proceso de rotura debemos obtener a los 7 y 28 días un porcentaje entre 8% al 12% de la resistencia del ensayo a compresión 18	REI
	MECÁNICA	r	1	(cm) Promedio	15,185	15,24		15,22	15,335	15,275	15,27	\Box	H		ebernos obte	MARTIN
	SISTENCIA	JAVIER		1 D2 Prem	15,17	15,2		15,19	15,28	15,32	15,23	П			de rotura d	POR: HTE BORBOR RICKY MARTIN
		DO DARÍO		DI	15,2	15,28		15,25	15,39	15,23	15,31	П			el proceso	MITE BO
	ANÁLISIS COMPARATIVO DE	REYES RICARDO DARÍO JAVIER		VACIABO	24-jul	24-jul		24-jul	17-jul	17-jul	lvi-71		$\left \cdot \right $		JTA: Durante	REALIZADO Y CALCULADO POR: RIO JAVIER MITE BG
	ALISIS O		İ	ž	п	7		ю	н	2	m		\vdash	F	×	O DARIO J
	TESIS: AW	TESISTAS:		CLINDRO	TESIS	TESIS		TESIS	TESIS	TESIS	TESIS					REYES RICARDO DARIO JAVIER

Certificado de laboratorio.

Santa Elena, 09 de agosto de 2025

INGEOTOP S.A.

Laboratorio de Suelos, Hormigones y Asfaltos Santa Elena – Ecuador

CERTIFICADO DE ENSAYOS DE LABORATORIO

Por medio de la presente certifico que el laboratorio de Suelos, Hormigones y Asfaltos INGEOTOP S.A. ubicado en el Cantón Santa Elena, Parroquia Ballenita, ciudadela los caracoles, Manzana 1b solar 16, brindó el servicio a los egresados de Ingeniería civil, sr. Mite Borbor Ricky Martin con cédula 0942985912 y sr. Reyes Ricardo Darío Javier con cédula: 2400010365. Los ensayos de resistencia en probetas cilíndricas de hormigón, se realizaron con fines de investigación académica para el desarrollo del trabajo de titulación cuyo tema es "ANÁLISIS COMPARATIVO DE LA RESISTENCIA MECÁNICA ENTRE CONCRETO CON AGREGADOS RECICLADOS DE DEMOLICIÓN Y CONCRETO TRADICIONAL".

Las mezclas ensayadas correspondieron a seis dosificaciones distintas, considerando porcentajes de reemplazo del agregado grueso natural por agregado grueso reciclado de RCD en proporciones del 15%, 25%, 50%, 75% y 100%, además de una mezcla de referencia o Tradicional, elaborada sin sustitución de agregado. Cada dosificación fue preparada, curada y ensayada conforme a los procedimientos técnicos establecidos, aplicando la norma ASTM C39/C39M - Método de ensayo estándar para resistencia a la compresión de especímenes cilindricos de concreto.

Durante el proceso, se garantizó el control de fabricación y curado de las probetas cilíndricas y temperatura, se da constancia de que los equipos utilizados se encuentra debidamente calibrados y certificados. Los resultados obtenidos fueron registrados y archivados, encontrándose disponibles para consulta de la parte interesada.

Se expide el presente certificado a solicitud de parte interesada, para los fines técnicos y administrativos que estime pertinentes.

Ing. Juan José Hamanante Cabrera PhD 0981572310

> Jefe de Laboratorio INGEOTOP S.A.

Dirección: Los Caracoles Mz. 1B solar 17 Cel.: 042953750 - 0981572310 - 0981572554 Correo: ingeotop@hotmail.es

Certificado de calibración

CERTIFICADO DE CALIBRACIÓN Certificate of Calibration

NÚMERO: EF-2443 Manteur PÁGINAS: 1 de 3

FECHA DE EXPEDICIÓN: 2025-04-22

INSTRUMENTO: MÁQUINA DE ENSAYO A COMPRESIÓN

MAGNITUD: FUERZA

FABRICANTE: MAQUISUELOS

MODELO: MQH-1

NÚMERO DE SERIE: 108

CÓDIGO INTERNO: NO PORTA

INTERVALO DE MEDICIÓN: 0,02 kN a 0,981 kN

Measurement Interval
SOLICITANTE: INGEOTOP

DIRECCIÓN, CIUDAD: LOS CARACOLES-MANZANA 18-SOLAR 16 / BALLENITA

FECHA DE CALIBRACIÓN: 2025-03-18

FECHA DE CALIBRACION: 2025-03-18

SITIO DE CALIBRACIÓN: LABORATORIO CENTRAL INGEOTOP

NÚMERO DE PÁGINAS DEL CERTIFICADO INCLUYENDO ANEXOS: Tres (3)

Number of pages of this certificate and Documents Attached

Los resultados contenidos en el presente certificado se refieren al momento y condiciones en que se realizaron las mediciones. El laboratorio

que lo emite no se responsabilitze de los perjuicios que puedan deriverse del uso insdecusdo de los instrumentos calibrados. The results of this cartificate refer to the moment and conditions in which the measurements were made. The issuing Laboratory assumes

no responsibility for damaged ensuing of mix use of the calibrated instruments.

Este certificado aplica únicamente a los items identificados al momento y condiciones en que se realizan las mediciones.

This certificate applies only to the items identified at the time and under the conditions in which the measurements are made

No se debe reproducir el presente certificado de calibración, excepto en su totalidad, sin la aprobación escrita de laboratorio Metrotest Metrología Ltda

This calibration carifficate should not be reproduced, except in its entirety, without the written approval of the leboratory Metrologic Lide.

El usuario es responsable de la nueva calibración de sus instrumentos a intervalos apropiados

The user is responsible for having the apparatus calibrated at apropiate intervals

FIRMAS AUTORIZADAS : Authorized signatures

RODRIGUEZ SIERRA CHRISTIAN FELIPE Firmado digitalmente por RODRIGUEZ SIERRA CHRISTIAN FELIPE Fecha 2025.04.22 17:56:29-05'00'

Coordinador Técnico de Laboratorio Aprobado por - Approbed By

> FT 013 Revisión 21 Fechs de aprobación: 2024-11-01

Certificado de calibración

CERTIFICADO DE CALIBRACIÓN Certificate of Calibration

ISO/IEC 17025:2017 10-LAC-027

NÚMERO: EF-2443 Number PÁGINAS: 2 de 3

MÉTODO DE MEDICIÓN Mafred of manuscrement	Fuerza Indicada Constante Según Procedimiento Interno verificado PT003
MORMA TÉCNICA Standard	NTC/ISD 7500-1: 2007-07-25
INTERVALO CALIBRADO Culbration Interval	100 kN a 1000 kN
IN	DICADOR DE FUERZA
TIPO DE INDICACIÓN (Typo)	DIGITAL.
FABRICANTE (Manufactor)	BLECWY
MODELO (Made)	MOL-1
MÚMERO DE SERNE (Serial Nambar)	C-1115
TRA	NSDUCTOR DE FUERZA
FABRICANTE (Manufactor)	FORCE
MODELO (Model)	HPS-001-10000
MÜMERO DE SERNE (Serial Namber)	161125023

1. RESULTADOS DE LA CALIBRACIÓN

[Discoulée	do Carga:	00	MERCHICN			Limite Infe	rior de la Fec	ola del lestra	necetor	0,02	NN.	1
	Tipe de la	director		DIGITAL					lisa	bolóm	0,000	NA.	1
		lied issoites d	el Patrin		- 4	heided EN		Eirmones.	Encontrado	Hedded %			L
Indicación del instrumento a califinar Unidado IN	1.1	1.2	ш	14	13-	Personie		4"	le*	V*	Accessories?	Investido sobre repossibil a ir (L)	10.12 10.12
0,098 07	0,095 06	0,096-04	0,098 02	-	-	0,30	1,806-01	0,02	0.04	-	-	0,26	2,0
0,196 13	0,196 15	0,196-06	0,19616	-	-	0,196 122	5,006-02	0,00	0.85	-		0,26	2,0
0,294 20	0,294.26	0,294.25	0,294 22	-	-	0,294.251	3,336-62	-0,02	0.82	-		0,26	2,0
0,392.27	0,392.36	0,392.41	0,392.31	-	-	6;392.368	2,506-02	-0,09	0.85	-		0,26	2,0
0,490.33	0,490.51	0,490.36	0,490.41	-	-	0,490,425	2,006-02	-0,02	0.85	-		0,26	2,0
0,588 40	0,589.65	0,588-62	0,589.65	-	-	0,588 642	1,675-02	-0,04	0.81	-		0,26	2,0
0,696.47	0,686.50	0,686.90	0,686 50	-	-	0,696,500	1,456-02	-0,05	0,80			0,26	2,0
0,784 53	0,784.95	0,784.97	0,784.94	-	-	6/794 952	1,256-02	-0,05	0.00	-		0,26	2,0
0,882 60	0,883 10	0,883-12	0,88312	-	-	0,883-111	1,11E-02	-0,06	0,80	-		0,26	2,0
Indicarities residual sie La mangaina	0,80	0,00	0,00		-		to relativa; q = Evaz- versibilidad; Acceso						

2. CONDICIONES ABBIENTALES DURANTE LA CALIBRACIÓN

	1.1	1.2	13	14	12"
T. Inicial.	32,1	32,3	31,3		- 1
T. Final	34,2	31,2	32,2		- 1
					C Seibled!

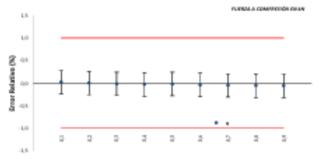
2. MÁXIMOS ERRORES ENCONTRADOS

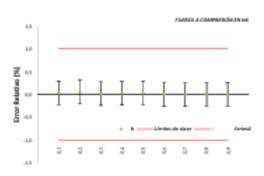
		4	b	· · ·	fe-	Assession	Investidandos requestida	h
	0,10	-0,06	0,65		0,00		0,26	2,0
NTC-ISO 7908-0:2007 Numerali	621	651	652	6.48	6.45	6.66	Amese I)-
							11-1	4.4

FT 013 Revisión 21

Certificado de calibración

CERTIFICADO DE CALIBRACION Certificate of Calibration





NÚMERO: EF-2443

PÁGINAS: 3 de 3

4. GRÁFICOS DE ERROR CALCULADO

5. INCERTIOUSERS DE MEDICIÓN

La incertidumbre expendida de medición declarada se expresa como la incertidumbre de medición estándar multiplicada por el factor de cobertura k, de modo que la probabilidad de cobertura corresponde a aproximadamente el 95%." ILAC P14/09/2020 Politica de ILAC para Incertidumbre de medición en Calibración; Numeral 5.2.

6. CLASIFICACIÓN DE LA MÁQUIMA DE ENSAYO

Según los máximos errores encontrados (Numeral 3) y de acuerdo a la Norma Técnica Colombiana NTC-ISO-7500-1:2007-07-25, numeral 7, tabla 2, y la Incertidumbre expandida estimada, la maquina de ensayo se clasifica así:

ı	c	ивои п	9	RANG	OS DE MEDICI	dm (km)	DIRECCIÓN DE CARGA	CLASE DE PRECISIÓN
ı	10	al	98	0,10	a	0,882 599	COMPRESIÓN	1,8

Z. TRAZABILIDAD

Metrotest Ltds, assigura que los resultados de las mediciones son traxables al sistema internacional de unidades, por medio de una cadera ininterrumpida de

Patrón Utilizado: TRANSPORTOR OF PURPOS ZIE - 114

Certificado No. RETURNAL TRANS E. DECLARACIÓN DE CONFORMIDAD Y REGLA DE DECISIÓN:

El cliente no solicita declaración de conformidad.

S. DESCARGO DE RESPONSARA DA DAS-

No aplica descargo de responsabilidad

GRASHWICKNES

- 1. De acuerdo con los resultados anteriores se anexa el sello:
- Si el instrumento de ensayo es reubicado, deberá ser repetida la calibración en el sitio.
 La máquina de ensayo debe ser calibrada inmediatamente después de cualquier reparación del sistema eléctrico o mecánico ya que esto afecta la operación del sistema de medida.
- METROTEST LTDA, puede abatenerse de especir un certificado cuando por características técnicas considere que el equipo no es apto para la calibración y entregará en este caso un informe explicando los motivos.
- 5.El porcentaje de carga se calcula de acuerdo a la capacidad máxima de la maquina de ensayo.

"-FINDEL CERTIFICADO--"

EF-2443

FT 013 Revisión 21 stación: 2039-11-81

Certificado de calibración

CERTIFICADO DE CALIBRACIÓN Certificate of Calibration

NÚMERO: EM-2421 1 de 3

PÁGINAS :

FECHA DE EXPEDICIÓN: 2025-04-22

INSTRUMENTO: BALANZA DIGITAL

FABRICANTE: LEXUS

Manufacturer MODELO:

Model

NO PORTA NÚMERO DE SERIE:

Serial Number

CÓDIGO INTERNO: IGPT.LP.S.056

INTERVALO DE MEDICIÓN: 20 g a 30000 g

Measurement Interval SOLICITANTE: INGEOTOP

Customer

DIRECCIÓN/CIUDAD: LOS CARACOLES -MANZANA 18-SOLAR 16- BALLENITA

FENIX

Address

LABORATORIO CENTRAL SITIO DE CALIBRACIÓN:

Calibration site

FECHA DE CALIBRACIÓN: 2025-03-18

NÚMERO DE PÁGINAS DEL CERTIFICADO INCLUYENDO ANEXOS: Tres (3)

Number of pages of this certificate and Documents Attached

Los resultados contenidos en el presente certificado se refieren al momento y condiciones en que se realizaron las mediciones. El laboratorio que lo emite no se responsabilita de los parjuicios que puedan deriverse del uso inadecuado de los instrumentos calibrados.

The results of this certificate refer to the moment and conditions in which the measurements were made. The issuing Laboratory assurese no responsibility for damaged ensaing of reis use

of the calibrated instruments.

Este certificado aplica únicamente a los items identificados si momento y condiciones en que se resitzan las mediciones. This certificate applies only to the items identified at the time and under the conditions in which the measurements are made.

No se debe reproducir el presente certificado de celibración, excepto en su totalidad, sin la aprobación escrita de laboratorio Metrotest Metrologia Lida This calibration cartificate should not be reproduced, except in its entirety, without the written approval of the laboratory Methodogia Lidu.

El usuario es responsable de la nueva calibración de sus intrumentos a intervalos apropiados

The user is responsible for having the apparatus calibrated at apropiate intervals

CALIBRADO POR: Calibrated By

Carlos Urueña Técnico de Laboratorio

RODRIGUE Firmado digitalmente por Z SIERRA

RODRIGUEZ SIERRA CHRISTIAN

CHRISTIAN FELIPE

Fecha: 2025.04.22 FELIPE // 16:47:57 -05'00'

FIRMAS AUTORIZADAS : Authorized signatures

Supervisor Técnico de Laboratorio Aprobado por - Approved By

FT091 revisión 15 Fechs de aprobación: 2004-02-01

Carrera 81 A No. 23 B - 45 / Telefax: 7021418 - 6376674 / Bogotá D.C., Colombia E-mail: metrotesttda@gmail.com

Certificado de calibración

CERTIFICADO DE CALIBRACIÓN Certificate of Calibration

NÚMERO: EM-2421 Namber PÁGINAS: 2 de 3

Fages

MÉTODO DE MEDICIÓN: PESAJE DIRECTO, PROCEDIMIENTO INTERNO VERIFICADO PT020, MÉTODO INDICADO

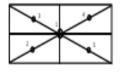
Method of measurement EN LA GUIA SIM MWG7/cg-01/v 0.00 (Numerales 4.4, 5.1, 5.2, 5.3, 6.2)

UBICACIÓN INSTRUMENTO: LABORATORIO CENTRAL

Locotion

CONDICIONES AMBIENTALES DURANTE LA MEDICIÓN

	Temperatura Del aire (°C)	Humedad Relativa del Aire (%hr)	Presión Atmosférica (hPa)
Minima	31	77	1.013
Máxima	32	79	1.013
Promedio	32	78	1.013


RESULTADOS DE LA CALIBRACIÓN

Carga Máxima (Máx.)		30 000	
División de escala	(d)	1	
Carga Mínima	(min)	20	
(Fabricante)			

1. PRUEBA DE EXCENTRICIDAD

Carga Máx./3 =		10 000 g
LADO	Indicación	Error
-1	10 000	0,0
2	9 998	- 2,0
- 3	9 999	- 1,0
-6	9 999	- 1,0
5	10 000	0,0
1	10 000	0,0
Error di	Excentr/olded	2,0

3. PRUEBA DE REPETIBILIDAD

Canga	Miv:	1	I.	
No.	Indicación	ERROR		
1	20	19	0	
2	20	19	,0	
1	20	19	,0	
- 4	20	19,0		
- 5	20	19,0		
6	20	19,0		
7	20	19,0		
1	20	19,0		
9	20	19,0		
10	20	19	,0	
069	VIACIÓN ESTAND	AR(s):	0,0	

carga (p)assess)		25 000 K		
No.	Indicación	ERROR		
1	14 998	- 2,0		
2	14 998	- 2,0		
3	14 999	- 1,0		
- 4	14 999	- 1,0		
5	14 999	- 1,0		
6	14 999	- 1,0		
7	14 999	- 1,0		
8	14 998	- 2,0		
9	14 998	- 2,0		
30	14 998	- 2,0		
	DESVIACIÓN ESTÁM	DAR (d):	0,5	

Carga	(0,85Min & Max.)	30 000	Æ		
No.	Indicación	ERROR			
- 1	30 005	5,0			
2	30 007	7,0			
3	30 006	6,0			
-4	30 005	5,0			
- 5	30 006	6,0			
6	30 006	6,0			
7	30 007	7,0			
- 8	30 006	6,0			
9	30 006	6,0			
10	30 006	6,0			
Di	DESVIACIÓN ESTÁNDAR (G. D.7				

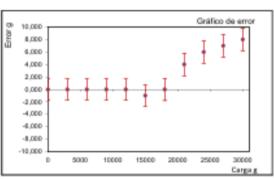
DESMACIÓN ESTÁNDAR MÁRIMA 0,7 E

FT091 revisión 15 Fecha de aprobación: 2004-02-01

Certificado de calibración

CERTIFICADO DE CALIBRACIÓN Certificate of Calibration

NÚMERO: EM-2421


Namber PÁGINAS :

3 de 3

Pages

4. PRUEBA PARA LOS ERRORES DE LA INDICACIÓN

					Unidad: g
		APLICACIÓ	N DE CARGAS		
PATRÓN DE CALIBRACIÓN (A E)	Indicación (±g)	ERROR (± g)	INCERTIDUMBRE (± g.)	95,45 %	Indicación antes de Ajuste
20	20	0,0	1,7	2,2	
3 000	3 000	0,0	1,7	2,2	
6 000	6 000	0,0	1,7	2,2	
9 000	9 000	0,0	1,7	2,2	
12 000	12 000	0,0	1,7	2,2	
15 000	14 999	-1,0	1,7	2,2	
18 000	18 000	0,0	1,6	2,2	-
21 000	21 004	4,0	1,6	2,1	
24 000	24 006	6,0	1,6	2,1	-
27 000	27 007	7,0	1,6	2,1	
30 000	30 008	8,0	1,6	2,1	-

[&]quot;La incertidumbre espandida de medición declarada se espresa como la incertidumbre de medición estándar multiplicada por el factor de cobertura k, de modo que la probabilidad de cobertura corresponde a aproximadamente el 95%." ILAC P34:09/2020 Política de ILAC para Incertidumbre de medición en Calibración; Numeral 5.2

TRAZABILIDAD DE LAS MEDICIONES

El laboratorio de masa de Metrotest Ltda, asegura que los resultados de las mediciones son tracables al sistema internacional de unidades, por medio de una cadena ininterrumpida de calibraciones que los vincula a patrones nacionales o internacionales, calibrados en laboratorios competentes en la norma ISO/EC 17025.

Equipo	Rango	Clase	Cert. No.	Proveedor de Calibración
SET DE PESAS	1 g a 10 kg	F1	18824 / UVS-BOG-18665	ATLAS / SIGMA

5. DECLARACIÓN DE CONFORMIDAD Y REGLA DE DECISIÓN:

El diente no solicita declaración de conformidad

6. DESCARGO DE RESPONSABILIDAD:

No aplica descargo de responsabilidad

OBSERVACIONES

- De acuerdo con los resultados anteriores se anexa el sticker: EM-2421
- 2. Si el instrumento es reubicado, deberá ser repetida la calibración en el sitio.
- 3. Mantener la balanza nivelada, antes, durante y después de su uso.
- METROTEST LTDA puede abstenerse de expedir un certificado cuando por características técnicas considere que el equipo no es apto para el trabajo y entregará en este caso un informe explicando los motivos.
- Los errores reportados son calculados con la corrección por la indicación residual de cero en las pruebas de los numerales 1, 3 y 4. del presente certificado de calibración. (GUIA SIM MWG7/cg-01/v 0.00. Numeral 4.4.1).

--FIN DEL CERTIFICADO--

FT091 revisión 15 Fecha de aprobación: 2024-02-01