

UNIVERSIDAD LAICA VICENTE ROCAFUERTE DE GUAYAQUIL

FACULTAD DE INGENIERÍA INDUSTRIA Y CONSTRUCCIÓN CARRERA DE ARQUITECTURA

TRABAJO DE TITULACIÓN PREVIO A LA OBTENCIÓN DEL TÍTULO DE ARQUITECTO

TEMA:

DISEÑO DE PROTOTIPO DE VIVIENDAS EMERGENTES APLICANDO CRITERIOS DE MODULACIÓN FLEXIBLE PARA FENÓMENOS NATURALES EN GENERAL VILLAMIL PLAYAS.

TUTOR:

ARQ. MGTR. CÉSAR ALBERTO ALTAMIRANO MERA.

AUTORES:

JEAN PIERRE BENAVIDES RODRÍGUEZ.

WALTER LUIS MARIDUEÑA BARRERA.

GUAYAQUIL

2025

REPOSITORIO NACIONAL EN CIENCIA Y TECNOLOGÍA FICHA DE REGISTRO DE TESIS

TÍTULO Y SUBTÍTULO:

Diseño de prototipo de viviendas emergentes aplicando criterios de modulación flexible para fenómenos naturales en General Villamil Playas.

AUTOR/ES: Benavides Rodríguez Jean Pierre	TUTOR: Arg. Mgtr. César Alberto Altamirano Mera
Maridueña Barrera Luis Walter	
INSTITUCIÓN:	Grado obtenido:
Universidad Laica Vicente	Arquitecto
Rocafuerte de Guayaquil	
FACULTAD:	CARRERA:
FACULTAD DE INGENIERÍA,	ARQUITECTURA
INDUSTRIAL Y	
CONSTRUCCIÓN	
FECHA DE PUBLICACIÓN:	N. DE PÁGS:
2025	238

ÁREAS TEMÁTICAS: Arquitectura y construcción

PALABRAS CLAVE: Diseño de vivienda, Casa móvil, Arquitectura, Diseño

arquitectónico

RESUMEN:

Esta tesis se plantea el diseño de un prototipo de vivienda emergente de modulación flexible, con el fin de adaptarse a fenómenos en Villamil Playas. La propuesta se centra en crear vivienda modulares, escalables y adaptables, que responda a las condiciones y necesidades cambiantes de las familias afectadas por desastre como inundaciones o lluvias intensas.

El diseño busca que el prototipo sea accesible en costos, sostenible, auto construible y flexible, incorporando estrategias para garantizar habitabilidad básica, ventilación e iluminación natural, además de permitir la expansión gradual del espacio habitable. Este enfoque surge de un análisis crítico de las viviendas de emergencia existentes, con el objetivo de superar sus carencias, tales como precariedad a baja durabilidad. Asimismo, se plantea que la vivienda pueda ser armada o adaptada fácilmente a distintos tipos de terreno y escenarios, facilitando su rápida reubicación y mejorando habitabilidad de los afectados.

N. DE REGISTRO (en base de	N. DE CLASIFICACIÓN:
datos):	

DIRECCIÓN URL (Web):		
ADJUNTO PDF:	SI x	NO
CONTACTO CON AUTOR/ES: Benavides Rodríguez Jean Pierre Maridueña Barrera Luis Walter	Teléfono:	E-mail: Jbenavidesr@ulvr.edu.e c wmariduenab@ulvr.edu .ec
CONTACTO EN LA INSTITUCIÓN:	Nombre: PhD. Marcial Sebastián Calero Amores Cargo: Decano de la Facultad de Ingeniería, Industria y Construcción. Teléfono: (04) 2596500 Ext. 241 E-mail: mcaleroa@ulvr.edu.ec Nombre: Mgtr. Fernando Nicolas Peñaherrera Mayorga Cargo: Director de la Carrera de Arquitectura Teléfono: (04) 2596500 Ext. 241 E-mail: fpenaherreram@ulvr.edu.ec	

CERTIFICADO DE SIMILITUD

Firma:

Arq. Mgtr. César Alberto Altamirano Mera

C.C. 0924317928

DECLARACIÓN DE AUTORÍA Y CESIÓN DE DERECHOS PATRIMONIALES

El(Los) estudiante(s) egresado(s) BENAVIDES RODRIGUEZ JEAN PIERRE Y

MARIDUEÑA BARRERA LUIS WALTER declara (mos) bajo juramento, que la autoría

del presente Trabajo de Titulación, DISEÑO DE PROTOTIPO DE VIVIENDAS

EMERGENTES APLICANDO CRITERIOS DE MODULACIÓN FLEXIBLE PARA

FENÓMENOS NATURALES EN GENERAL VILLAMIL PLAYAS., corresponde

totalmente a el(los) suscrito(s) y me (nos) responsabilizo (amos) con los criterios y

opiniones científicas que en el mismo se declaran, como producto de la investigación

realizada.

De la misma forma, cedo (emos) los derechos patrimoniales y de titularidad a

la Universidad Laica VICENTE ROCAFUERTE de Guayaquil, según lo establece la

normativa vigente.

Autor(es)

Firma:

Benavides Rodríguez Jean Benavides

C.I. 0963668520

Firma:

Maridueña Barrera Luis Walter

C.I. 0942765397

٧

CERTIFICACIÓN DE ACEPTACIÓN DEL DOCENTE TUTOR

En mi calidad de docente Tutor del Trabajo de Titulación Diseño de prototipo de viviendas emergentes aplicando criterios de modulación flexible para fenómenos naturales en General Villamil Playas, designado(a) por el Consejo Directivo de la Facultad De Ingeniería, Industria y Construcción de la Universidad Laica VICENTE ROCAFUERTE de Guayaquil.

CERTIFICO:

Haber dirigido, revisado y aprobado en todas sus partes el Trabajo de Titulación, titulado: Diseño de prototipo de viviendas emergentes aplicando criterios de modulación flexible para fenómenos naturales en General Villamil Playas. presentado por el (los) estudiante (s) BENAVIDES RODRIGUEZ JEAN PIERRE Y MARIDUEÑA BARRERA LUIS WALTER como requisito previo, para optar al Título de ARQUITECTO apto para su sustentación.

Firma:

Arq. Mgtr. César Alberto Altamirano Mera

C.C. 0924317928

AGRADECIMIENTO

Quisiera manifestar mi más profundo reconocimiento a todas las personas que hicieron posible la realización de este trabajo de titulación. En primer lugar, doy gracias a Dios por brindarme la fortaleza, el conocimiento y la perseverancia necesarias para superar cada reto a lo largo de este camino académico.

A mis padres, agradezco profundamente su constante apoyo y respaldo, así como por haberme inculcado valores y principios que han orientado mi camino. También les doy gracias por ofrecerme incondicionalmente su amor y por sus palabras de aliento en los momentos más complicados. Quiero destacar la colaboración y amistad de mi compañero de tesis, Walter Maridueña, por su compromiso, constancia y esfuerzo compartido en cada etapa que permitió concretar nos este objetivo. Finalmente, agradezco a todas aquellas personas que, de alguna manera, aportaron para que este sueño se hiciera realidad.

Jean Benavides

DEDICATORIA

A mi querida mamá, por su amor sin límites, su sacrificio permanente y su apoyo constante en cada etapa de mi vida. Gracias por mostrarme con su ejemplo la fortaleza y la perseverancia necesarias para cumplir mis sueños.

A mi abuela, agradezco profundamente su constante apoyo y respaldo, así como por haberme inculcado valores y principios que han orientado mi camino. También le doy gracias por ofrecerme incondicionalmente su amor y por sus palabras de aliento en los momentos más complicados.

Jean Benavides

AGRADECIMIENTO

Estoy eternamente agradecido con mi familia, quienes significan todo para mí. Sus consejos, conversaciones, risas, desahogos y palabras de aliento me ayudaron a formarme como persona.

Agradezco también a mi compañero de tesis y gran amigo, con quien compartí no solo este proyecto final, sino toda la etapa académica. Gracias a nuestro esfuerzo mutuo, pudimos concluir exitosamente nuestro trabajo de titulación.

Walter Maridueña

DEDICATORIA

Dedico esta tesis, con todo mi amor y gratitud, a mis padres, quienes son el pilar fundamental de mi vida. Gracias a su amor, esfuerzo y apoyo incondicional, he podido culminar esta importante etapa. Sin ellos, este logro no habría sido posible.

Agradezco a mis primos y tíos por su apoyo y generosidad durante todo este proceso. Su ayuda, en particular al proporcionarme un hogar donde descansar y seguir con mis estudios, fue fundamental para alcanzar esta meta.

A mi hermano, mis sobrinos y mi cuñada, por su cariño constante y por acompañarme en todo momento con afecto y alegría. Han sido un gran impulso en mi vida.

Walter Maridueña

RESUMEN

Este trabajo de investigación se centra en la aplicación de criterios modulares

para el diseño de prototipos de viviendas emergentes con modulación flexible,

adaptadas a fenómenos naturales en General Villamil Playas. El objetivo principal del

prototipo es adecuarse al entorno climático específico, especialmente ante

situaciones de inundaciones intensas.

La investigación inicia con un análisis del contexto urbano e histórico, con el fin

de entender las demandas sociales, económicas y culturales de la zona, junto con un

estudio exhaustivo del clima local. A partir de este diagnóstico integral, se plantean

tres estrategias bioclimáticas fundamentales para el diseño: un lavabo e inodoro

combinados en una sola unidad, estructuras de techo tipo Fink, y cubiertas tipo

sándwich que contribuyen a mejorar el confort térmico.

El propósito del diseño es desarrollar una solución innovadora para la

construcción de viviendas temporales, que integre funcionalidad y estética, al mismo

tiempo que proporcione una alternativa habitacional para personas afectadas por

inundaciones, fomentando así una arquitectura más sostenible y eficiente en relación

con el medio ambiente.

Palabras claves: Diseño de vivienda, Casa móvil, Arquitectura, Diseño

arquitectónico.

χi

ABSTRACT

This research focuses on the application of modular criteria for the design of

flexible modular pop-up housing prototypes adapted to natural phenomena in General

Villamil Playas. The prototype's main objective is to adapt to the specific climatic

environment, especially in the face of intense flooding.

The research begins with an analysis of the urban and historical context to

understand the social, economic, and cultural demands of the area, along with a

thorough study of the local climate. Based on this comprehensive diagnosis, three

fundamental bioclimatic strategies are proposed for the design: a sink and toilet

combined into a single unit, Fink-type roof structures, and sandwich-type roofs that

contribute to improved thermal comfort.

The purpose of the design is to develop an innovative solution for the

construction of temporary housing that integrates functionality and aesthetics while

providing a housing alternative for people affected by flooding, thus promoting more

sustainable and environmentally efficient architecture.

Keywords: Home design, Mobile home, Architecture, Architectural design.

xii

ÍNDICE GENERAL

CAPÍTULO I	1
ENFOQUE DE LA PROPUESTA	1
1.1 Introducción	1
1.2 Tema	2
1.3 Planteamiento del Problema	2
1.4 Formulación del Problema:	2
1.5 Objetivo General	3
1.6 Objetivos Específicos	3
1.7 Hipótesis o Idea a Defender	3
1.8 Línea de Investigación Institucional / Facult	ad4
CAPÍTULO II	5
MARCO REFERENCIAL	5
2.1 Marco Contextual:	5
2.1.1 Historia (antecedentes)	5
2.1.2 Análisis Físico	5
2.1.2.1 Ubicación	5
2.1.2.2 Límites Geográficos	6
2.1.2.3 Lugar o zona de intervención	6
2.1.2.4 Límites de la zona	6
2.1.3 Análisis Social	7
2.1.3.1 Demografía	7
2.1.3.2 Economía	7
2.1.3.3 Política	7
2.1.3.4 Cultura	7
2.1.3.5 Patrimonio Cultural	7
2.1.3.6 Accesibilidad vial.	8
2.1.3.7 Movilidad	8
2.1.4 Análisis natural	9
2.1.4.1 Temperatura	9
2.1.4.2 Nubes	10
2.1.4.3 Precipitación	11
2.1.4.4 Humedad	12
2.1.4.5 Vientos	13
2.1.4.6 Sol	14
2.1.4.7 Luna	15

2.1.4.8 Energía Solar.	16
2.1.4.9 Diagrama de Givoni	17
2.1.4.10 Ecosistemas.	18
2.1.4.11 Flora	18
2.1.4.12 Fauna	21
2.2 Marco Teórico	26
2.2.1 Base teórico para inicio de la investigación (25 referentes teóricos + 5 referentes de la universidad)	
2.3 Análisis de Casos Análogos	
2.3.1 Mapeo de Proyectos	
2.3.2 Análisis de Casos Individuales	
2.2.3 Comparación y Resultados de Comparación de Criterios	
2.2.3.1 Análisis de casos individuales.	
2.2.3.2 Comparación de criterios	
2.4 Marco conceptual	
2.4.1 Arquitectura Efímera	
2.4.2 Arquitectura Modular	
2.4.3 Arquitectura de emergencia	
2.4.4 Cambio climático	
2.4.5 Diseño Resiliente	86
2.5 Marco Legal	87
2.5.1 Normativas arquitectónicas	
2.5.2 Normativas estructurales	90
2.5.3 Normativas medioambientales	92
CAPÍTULO III	94
MARCO METODOLÓGICO	94
3.1 Enfoque de la Investigación	94
3.2 Alcance de la Investigación: Exploratorio y Descriptivo	94
3.3 Técnicas e Instrumentos	94
3.4 Población y Muestra	95
CAPÍTULO IV	97
PRESENTACIÓN DE RESULTADOS Y PROPUESTAS	97
4.1 Presentación de Resultados	97
4.2 Análisis de Resultados DAFO	109
4.3 Análisis de territorio	110
4.3.1 Llenos y vacíos	110
4.3.2 Equipamientos.	111

4.3.2.1 Radio de influencia de equipamientos	. 111
4.3.2.2 Equipamiento de Bienestar Social	.111
4.3.2.3 Equipamiento Cultural.	
4.3.2.4 Equipamiento de Educación.	
4.3.2.5 Equipamiento de Salud	. 114
4.3.2.6 Equipamiento Recreativo y Deportes	.116
4.3.2.7 Equipamiento Religioso.	. 117
4.3.2.8 Equipamiento de Seguridad	. 118
4.3.2.9 Equipamiento Administrativo.	. 120
4.3.2.10 Equipamientos de Servicios Funerarios.	. 121
4.3.2.11 Equipamiento de Transporte	. 122
4.3.3 Morfología urbana	. 123
4.3.4 Vialidad	. 123
4.3.5 Movilidad	. 124
4.3.6 Accesibilidad	. 125
4.3.7 Proximidad a redes	. 126
4.3.8 Usos de suelos	. 126
4.3.9 Altura de edificaciones	. 126
4.4.1 Análisis de Selección de Terreno	. 127
4.4.2 Situación actual en el territorio e indicadores de selección	. 127
4.4.3 Cuadro comparativo e indicadores de resultados	. 127
4.4.3.1 Indicadores de Selección del Terreno 1	. 127
4.4.3.2 Indicadores de Selección del Terreno 2	. 129
4.4.3.3 Indicadores de Selección del Terreno 3	. 130
4.4.3.4 Análisis de terreno seleccionado.	. 131
4.4.3.5 Asoleamiento.	. 131
4.4.3.6 Análisis de vientos.	. 132
4.5 Presentación de Propuesta	. 133
4.5.1 Descripción general	. 133
4.5.2 Base conceptuales, espacial, formal, funcional, bioclimática	. 133
4.5.3 Criterios Antropométricos, Seguridad y Accesibilidad Universal	. 135
4.5.3.1 Criterios antropométricos	. 135
4.5.3.1.2 Relación entre espacio y función	. 136
4.5.3.1.3 Flexibilidad y adaptabilidad espacial	. 136
4.5.3.2 Criterios de seguridad	. 137
4.5.3.3 Seguridad en acceso y circulación	. 137
4.5.3.4 Minimización de riesgos y tolerancia al error.	. 138

4.5.3.5 Accesibilidad universal.	138
4.5.3.6 Dimensiones adecuadas.	139
4.5.4 Criterios Constructivos y Estructurales	139
4.5.5 Criterios Bioclimáticos	140
4.6 Partido Arquitectónico	140
4.6.1 Programa de Necesidades	141
4.6.2 Diagrama de relaciones y funcionales	141
4.6.2.1 Matriz de relaciones ponderadas	141
4.6.2.2 Ponderación de áreas	142
4.6.2.3 Diagrama de relaciones	144
4.6.3 Proceso de Zonificación de Áreas	145
4.7 Resultados Obtenidos	147
4.7.1 Resultados Funcionales	147
4.7.1.1 Planos ilustrados	147
4.7.1.2 Implantaciones	150
4.7.1.3 Secciones	154
4.7.2 Resultados Formales	158
4.7.2.1 Elevaciones.	158
4.7.2.2 Axonometrías	162
4.7.2.3 Vista exteriores.	166
4.7.2.4 Vistas interiores.	172
4.7.3 Resultados Estructurales-Constructivos	178
4.7.4 Resultados Bioclimáticos	183
CAPÍTULO V- CUMBRE	185
5.1 Conclusiones	185
5.2 Recomendaciones	185
5.3 Bibliografías	186
5.4 Anexos	190

ÍNDICE DE TABLAS

Tabla 1: Líneas de investigación de la facultad de ingeniería Industria y
Construcción
Tabla 2: Límites geográficos de la ciudad de Playas6
Tabla 3: Análisis del Diagrama de Givoni
Tabla 4: Ecosistema
Tabla 5: flora
Tabla 6: Fauna21
Tabla 7: Hexacube: utopía de plástico. Del hábitat turístico prefabricado y modular a
la "casa evolutiva" itinerante
Tabla 8: Arquitectura modular en el diseño urbano de la comunidad indígena Shipibo
Konibo de Cantagallo – Lima 2023
Tabla 9: De la "Quesana" tradicional a un sistema modular de paneles aislantes de
Totora28
Tabla 10: Diseño arquitectónico de un prototipo modular de huerto vertical en el
cantón Milagro29
Tabla 11: Diseño arquitectónico de un albergue temporal modular para jóvenes en
situación de calle en el Sur de Guayaquil
Tabla 12: Prototipo de vivienda modular rural en madera, ambientalmente
sostenible, utilizando maderas pioneras colombianas
Tabla 13: Diseño de conexiones metálicas genéricas de una vivienda prefabricada,
modular y desmontable32
Tabla 14: Aplicación de un enfoque híbrido de Dirección de Proyectos para la
construcción de un campamento modular. Caso: Aeropuerto en la región Sur del
Perú
Tabla 15: Análisis y diseño estructural de un puente modular con conexiones de
rápido ensamble para caminos de acceso en la industria petrolera34
Tabla 16: El diseño biodigital en el proceso proyectual: metodología alternativa para
la enseñanza del diseño35
Tabla 17: El diseño biodigital en el proceso proyectual: metodología alternativa para
la enseñanza del diseño
Tabla 18: Análisis Geoespacial en la Arquitectura Bioclimática: Propuesta de análisis
por sobreposición de capas para determinar Estrategias de Diseño Bioclimático 37
Tabla 19: Jaime López de Asiaín: del Seminario de Arquitectura Bioclimática al
Equipo Solar Decathlon de la Universidad de Sevilla a través de una maestría
cordial38
Tabla 20: Arquitectura bioclimática en el diseño de espacios de educación primaria
para la ciudad de Otuzco - La Libertad 2023 39
Tabla 21: Diseño bioclimático de una vivienda en Santa Rosa de Lima, OAX 40
Tabla 22: Aportes al diseño de espacios energéticamente eficientes en edificios
existentes. Reciclando el edificio de Postgrado de la Universidad Americana
conforme parámetros físicos bioclimáticos

Tabla 23: Propuesta de intervención bioclimática en el Edificio Cronos para obtene	∍r
la certificación ambiental EDGE©	42
Tabla 24: La sustentabilidad en el proceso de diseño arquitectónico, enfoque desd	le
el pensamiento complejo	43
Tabla 25: Enfoques del ecourbanismo para ciudades de América Latina	44
Tabla 26: Del interés sustentable al regenerativo: consideraciones a partir de	
proyectos premiados de vivienda multifamiliar	45
Tabla 27: Propuesta de reutilización de plástico de desecho en un sistema	
constructivo para división de interiores basado en paneles de PVC	46
Tabla 28: Aplicación de escenarios en la evaluación de un estudio de caso, por	
medio de materiales y componentes constructivos sostenibles	47
Tabla 29: El sistema tendinoso y la evolución de su tecnología constructiva: una	
revisión	48
Tabla 30: Propuesta de una arquitectura de referencia académica para la	
enseñanza de DevOps	49
Tabla 31: Diseño arquitectónico de una vivienda unifamiliar con un sistema	
constructivo Walltech.	
Tabla 32: Diseño participativo de un espacio público en el casco histórico de Sevill	
Toble 22: Más allá (v más asá) de un notie. Les capaciones múltiples de la	51
Tabla 33: Más allá (y más acá) de un patio. Las concepciones múltiples de la	oio
arquitectura doméstica, emergentes de un diseño participativo (Rinconada, province Jujuy)	
Tabla 34: Diseño urbano táctico como instrumento placemaking en la Av. Samuel	J2
Cisneros en el cantón Durán	53
Tabla 35: Arquitectura progresiva para el diseño de viviendas comunitarias enfoca	
en tipologías de estilo americano.	
Tabla 36: El diseño participativo desde la perspectiva del diseño	
Tabla 37: Análisis de proyectos análogos	
Tabla 38: Resultado de proyectos análogos	
Tabla 39: Especificaciones en obras menores	
Tabla 40: Campamentos temporales.	
Tabla 41: Protección especial a personas con doble vulnerabilidad	
Tabla 42: Protección especial a personas con doble vulnerabilidad	88
Tabla 43: Elementos desmontables.	
Tabla 44: Obras preliminares	89
Tabla 45: Requerimiento y metodología que quiere cumplir	89
Tabla 46: Clasificación de suelo	90
Tabla 47: Normas técnicas ecuatorianas	90
Tabla 48: Especificaciones en obras menores	
Tabla 49: Requisitos específicos	
Tabla 50: Uso de suelos	
Tabla 51: Uso de suelos	
Tabla 52: Uso suelo.	
Tabla 53: Técnicas.	94

Tabla 54: Instrumentos	95
Tabla 55: Equipamiento de Bienestar Social	112
Tabla 56: Equipamiento Cultural	
Tabla 57: Equipamiento de Educación	114
Tabla 58: Equipamiento de Salud	115
Tabla 59: Equipamiento Recreativo y Deportes	116
Tabla 60: Equipamiento Religiosa	
Tabla 61: Equipamiento de Seguridad	119
Tabla 62: Equipamiento Administrativo	
Tabla 63: Equipamiento de Servicios y Funerarias	121
Tabla 64: Equipamiento de Transporte	122
Tabla 65: Aspectos de la trama ortogonal de Playas	123
Tabla 66: Indicadores de selección del terreno 1	
Tabla 67:Indicadores de selección del terreno 2	
Tabla 68: Indicadores de selección del terreno 3	130
Tabla 69: Base conceptual, espacial, funcional y bioclimática.	134
Tabla 70: Dimensiones humanas básicas y espacios mínimo.	135
Tabla 71: Dimensiones humanas básicas y espacios mínimo.	
Tabla 72: Flexibilidad y adaptabilidad	136
Tabla 73: Criterios de seguridad con materiales flexibles	137
Tabla 74: Seguridad en acceso y circulación	137
Tabla 75: Minimización de riesgos y tolerancia al error	138
Tabla 76: Accesos sin barreras físicas	
Tabla 77: Dimensiones adecuadas	
Tabla 78: Criterios constructivos y estructurales	
Tabla 79: Criterios bioclimáticos.	
Tabla 80: Programa de necesidades de una vivienda Tempor	al 141

ÍNDICE DE FIGURAS

Ilustración 1:Ubicación del terreno	6
Ilustración 2: Temperatura	10
Ilustración 3: Nubes	11
Ilustración 4: Precipitación	12
Ilustración 5: Humedad	13
Ilustración 6: Viento	14
Ilustración 7: Sol	14
Ilustración 8: Puesta y salida del sol	15
Ilustración 9: La luna.	16
Ilustración 10: Energía solar	16
Ilustración 11: Diagrama de Givon	17
Ilustración 12: Mapeo de proyectos	56
Ilustración 13: Refugio temporal diseñado por Shiheru Ban	57
Ilustración 14: Hábitat flotante productivo del pescador	58
Ilustración 15: Refugio de emergencia con eco materiales	59
Ilustración 16: Vivienda de emergencia	60
Ilustración 17: Prototipo de vivienda rural en Apan/dvch de Villlar Chacon	
arquitectura	61
Ilustración 18: Cmax Systems	
Ilustración 19: Ábaton casa tranporte ´ph80/Ábaton arquitectura	
Ilustración 20: Concrete Canvas Shelter	64
Ilustración 21: Escuela flotante en Makako	
Ilustración 22: Paper Log House.	
Ilustración 23: Container temporary housing	67
Ilustración 24: Lonhbag Superade.	68
Ilustración 25: Refugio de emergencia/Nic Gonzales + Nic Martoo	69
Ilustración 26: Bienester, centro comunitario Teknaf Upaliza	70
Ilustración 27:Tabulación Encuesta – Pregunta 1	
Ilustración 28: Tabulación Encuesta – Pregunta 2	
Ilustración 29: Tabulación Encuesta – Pregunta 3	
Ilustración 30: Tabulación Encuesta – Pregunta 4	
Ilustración 31: Tabulación Encuesta – Pregunta 5	
Ilustración 32: Tabulación Encuesta – Pregunta 6	
Ilustración 33: Tabulación Encuesta – Pregunta 7	
Ilustración 34: Tabulación Encuesta – Pregunta 8	
Ilustración 35: Tabulación Encuesta – Pregunta 9	
Ilustración 36: Tabulación Encuesta – Pregunta 10	
Ilustración 37: Tabulación Encuesta – Pregunta 11	
Ilustración 38: Tabulación Encuesta – Pregunta 12	
Ilustración 39: Análisis Dafo	
Ilustración 40: Llenos y vacíos	
Ilustración 41: Radio de influencia de equipamientos.	111

Ilustración 42: Equipamiento de Bienestar Social	112
Ilustración 43: Equipamiento Cultural	
Ilustración 44: Equipamiento de Educación	114
Ilustración 45: Equipamiento de Salud	115
Ilustración 46: Equipamiento Recreativo y Deportes	116
Ilustración 47: Equipamiento Religiosa.	117
Ilustración 48: Equipamiento de Seguridad	119
Ilustración 49: Equipamiento Administrativo	
Ilustración 50: Equipamiento de Servicios y Funerarias	121
Ilustración 51: Equipamiento de Transporte	122
Ilustración 52: Morfología urbana	123
Ilustración 53: Viabilidad	124
Ilustración 54: Movilidad	125
Ilustración 55: Accesibilidad	125
Ilustración 56: Usos de Suelos	126
Ilustración 57: Análisis del terreno.	127
Ilustración 58: Análisis del terreno seleccionado	131
Ilustración 59: Análisis del Asoleamiento.	132
Ilustración 60: Rosa de los Vientos.	132
Ilustración 61: Concepto de la propuesta	
Ilustración 62: Partido Arquitectónico	140
Ilustración 63: Matriz de relaciones-Área de Prototipo de vivienda	142
Ilustración 64: Ponderación de áreas	
Ilustración 65: Ponderación de áreas	143
Ilustración 66: Diagrama de relaciones.	144
Ilustración 67: Zonificación.	
Ilustración 68: Plano ilustrado-Prototipo 1	148
Ilustración 69: Planos ilustrados-Prototipo 2	
Ilustración 70: Implantación general	
Ilustración 71: Implantación de cubiertas.	151
Ilustración 72: Implantación sanitaria	
Ilustración 73: Implantación eléctrica.	
Ilustración 74: Corte ilustrados-Prototipo 1	
Ilustración 75: Cortes ilustrados-Prototipo 1	
Ilustración 76: Cortes Ilustrados-Prototipo 2	
Ilustración 77:Cortes ilustrados-Prototipo 2	
Ilustración 78: Elevación prototipo 1	
Ilustración 79: Elevación prototipo 1	
Ilustración 80: Elevación prototipo 1	
Ilustración 81: Elevación prototipo 1	
Ilustración 82: Axonometría-Prototipo 1	
Ilustración 83: Axonometrías-Prototipo 2	
Ilustración 84:Axonometría-Baño	
Ilustración 85:Axonometría-Prototipo 1	165

Ilustración	86:Vistas exteriores.	166
Ilustración	87:Vista exteriores.	167
Ilustración	88:Vistas exteriores.	168
Ilustración	89:Vistas exteriores.	169
Ilustración	90:Vistas exteriores.	170
Ilustración	91:Vistas exteriores.	171
Ilustración	92:Vistas interiores.	172
Ilustración	93:Vista interiores.	173
Ilustración	94:Vistas interiores.	174
Ilustración	95:Vista interiores.	175
Ilustración	96:Vistas interiores.	176
Ilustración	97:Vistas interiores.	177
Ilustración	98:Detalles constructivos.	178
Ilustración	99:Detalles constructivos.	179
Ilustración	100:Detalles constructivos.	180
Ilustración	101:Detalles constructivos	181
Ilustración	102:Detalles constructivos.	182
Ilustración	103: Resultados bioclimáticos	183
Ilustración	104 Resultados bioclimáticos	184

ÍNDICE DE ANEXOS

Anexos 1:Ficha técnica	190
Anexos 2: Presupuesto	194
Anexos 3: Contenedor	195
Anexos 4: Planos arquitectónico	196

CAPÍTULO I

ENFOQUE DE LA PROPUESTA

1.1 Introducción

La arquitectura modular se basa en elementos separados y prefabricados que pueden ampliarse, reemplazarse o reorganizarse, otorgando gran adaptabilidad al diseño arquitectónico (Mayén, 2020).

Este proyecto plantea el desarrollo de una vivienda temporal diseñada para brindar atención en casos de emergencia ocasionados por inundaciones en General Villamil Playas. La vivienda dispondrá de servicios esenciales y servirá como un centro de refugio para las personas afectadas de la comunidad.

Una de las principales ventajas de la arquitectura modular es su rapidez lo que lo convierte en una solución efectiva y oportuna frente a situaciones críticas generadas por desastres naturales, de esta forma, se reduce el alcance o impacto que generan este tipo de situaciones críticas.

El propósito de esta propuesta es crear una vivienda que se adapte a las necesidades de personas afectadas por desastres, que pueda ser instalada de manera rápida y sencilla, utilizando materiales adecuados para ecosistemas susceptibles a inundaciones.

Diversas instituciones como la Cruz Roja, Policía Nacional, Fuerzas Armadas, Ministerio del interior y la Secretaría Nacional de Gestión de Riesgos participan en el monitoreo climático y atención de emergencia (Ministerio de gobierno, 2025). La colaboración entre estas entidades y la población permitirá la implementación eficaz de los prototipos de viviendas temporales.

1.2 Tema

Diseño de prototipo de viviendas emergentes aplicando criterios de modulación flexible para fenómenos naturales en General Villamil Playas.

1.3 Planteamiento del Problema

En febrero de 2023, el cantón General Villamil Playas fue afectada por fenómenos naturales como lluvias intensas, aumento del nivel del mar y el desbordamiento del río Arena, lo que provocó la inundación de 18 barrios, incluyendo Twintza, Aguas Verdes, Garay, 15 de agosto, Playas 2, Torbay, Altamira y Chacra Linda, afectando a más de 150 personas (El comercio, 2023).

Durante la temporada de lluvias, el aumento del caudal de los ríos que atraviesan la ciudad provoca su desbordamiento, generando inundaciones que afectan directamente a la vivienda, causando pérdidas materiales, económicas y desplazamiento temporal de las familias afectadas (El comercio, 2023).

Actualmente, el cantón no cuenta con albergues temporales adecuados que permitan una respuesta rápida ante situaciones de emergencia, lo que obliga a numerosas familias a afrontar la crisis sin un lugar seguro donde resguardarse. Esta carencia afecta de manera negativa la salud física y emocional de la comunidad, provocando sentimientos de estrés, ansiedad y miedo, que merman el bienestar general de sus habitantes.

Ante esta problemática recurrente, es necesario examinar las causas y efectos de estos fenómenos naturales en el cantón, poniendo de manifiesto la ausencia de soluciones eficaces. Como alternativa, se plantea el desarrollo de un prototipo arquitectónico de vivienda temporal que satisfaga las necesidades de las personas afectadas.

1.4 Formulación del Problema:

¿De qué manera el diseño de una vivienda emergente modular, construida con materiales adaptables al ecosistema costero, puede mitigar el impacto de las inundaciones y garantizar condiciones de habitabilidad temporal segura y de rápida implementación para las familias damnificadas de General Villamil Playas?

1.5 Objetivo General

Diseñar un prototipo arquitectónico de vivienda emergente modular que garantice condiciones de habitabilidad temporal segura y rápida instalación, aplicando principios de adaptabilidad geográfica y sostenibilidad material, en respuesta a las condiciones ambientales y sociales del cantón General Villamil Playas.

1.6 Objetivos Específicos

Analizar las condiciones geográficas y ambientales del cantón General Villamil Playas, identificando las principales vulnerabilidades y necesidades de la población ante fenómenos naturales en las zonas de riesgos.

Evaluar los resultados del análisis contextual para establecer criterios arquitectónicos y estrategias de modulación flexible aplicables al diseño de viviendas emergentes en General Villamil Playas.

Formular una propuesta arquitectónica basada en criterios de modulación flexible, que responda al contexto local y proporcione soluciones habitacionales adaptables para emergencias.

Desarrollar y presentar la presentación gráfica del proyecto mediante planos, secciones, perspectivas, maquetas y renders digitales en formatos 2D y 3D.

1.7 Hipótesis o Idea a Defender

El desarrollo de un prototipo de vivienda temporal modular, con una estructura flexible y materiales que se adaptan al entorno, permitirá una construcción rápida y sencilla. Este diseño garantiza espacios funcionales, confort térmico y una respuesta eficiente frente a emergencias por inundaciones en áreas vulnerables, como el cantón General Villamil Playas. Esta propuesta arquitectónica facilitará el montaje sin necesidad de personal especializado, ajustándose a las condiciones habitacionales y climáticas propias del entorno costero.

1.8 Línea de Investigación Institucional / Facultad.

Tabla 1: Líneas de investigación de la facultad de ingeniería Industria y Construcción.

Dominio	Línea Institucional	Línea de Facultad	Sub-líneas investigación Facultad	de
Urbanismo y ordenamiento territorial aplicando tecnológica de la construcción eco amigable, industrias y desarrollo de energías renovables.	Territorio, medio ambiente y materiales innovadores para la construcción.	Territorio	Hábitat, Diseño Construcción Sustentable	У

Fuente: ULVR

CAPÍTULO II

MARCO REFERENCIAL

2.1 Marco Contextual:

2.1.1 Historia (antecedentes)

General Villamil Playas tuvo su origen como asentamiento pesquero sobre antiguos territorios indígenas del Golfo de Guayaquil. Con el tiempo, evolucionó hacia un centro poblado gracias a sus condiciones climáticas y geográficas favorables, consolidándose como destino turístico desde principios del siglo XX. Las playas, conocidas por su clima agradable y aguas cristalinas, favorecieron el crecimiento del pueblo. En 1910, el General Eloy Alfaro decretó su parroquialización, y con el apoyo del ingeniero Escalante, alcanzó la cantonización. A principios del siglo XX, Víctor Emilio Estrada promovió su desarrollo turístico. La construcción de la carretera Guayaquil-Playas en 1984 consolidó su crecimiento (ASOCIACIÓN DE MUNICIPIOS DEL ECUADOR, s.f.).

2.1.2 Análisis Físico

2.1.2.1 Ubicación.

La ubicación costera y los límites con el océano Pacífico posiciona al cantón en una zona de alta exposición a eventos hidrometeorológicos como marejadas e inundaciones, lo cual refuerza la necesidad de soluciones habitacionales adaptativas.

Es un balneario ubicado dentro de la provincia del Guayas, al suroeste del mismo, el cantón está a una distancia de 96 Kilómetros de Guayaquil, la capital de la provincia, sus límites son al sur y al oeste con el basto Océano Pacífico, al norte con el cantón Guayaquil y al este con el cantón de Santa Elena.

2.1.2.2 Límites Geográficos.

Límites geográficos de la Ciudad de Playas

Tabla 2: Límites geográficos de la ciudad de Playas

LÍMITE	CIUDAD/CANTÓN
Norte	Guayaquil
Este	Santa Elena
Sur	Océano Pacífico
Oeste	Océano Pacífico

Elaborado por: Benavides y Maridueña (2025).

2.1.2.3 Lugar o zona de intervención.

Ilustración 1:Ubicación del terreno.

Av. Jaime Roldós
Aguilera
Perímetro:
316 m
Area:

6.120 m2

Elaborado por: Benavides y Maridueña (2025).

2.1.2.4 Límites de la zona.

Norte: Av. Jaime Roldós Aguilera

Sur: terreno baldío sin identificar

Este: terreno baldío sin identificar

Oeste: terreno baldío sin identificar

2.1.3 Análisis Social

2.1.3.1 Demografía.

Según datos del *INEC*, en el año 2022 la población del cantón General Villamil Playas fue estimada en 63.353 habitantes (Mora Carpio et al., 2022).

2.1.3.2 Economía.

La economía que presenta el Cantón Playas está altamente ligado al turismo que se desarrolla en general y todos los movimientos que trae consigo, puesto que, el turismo en Playas influencia de manera económica a los diferentes sectores productivos que existen en el cantón (Quintero Santos, 2014).

2.1.3.3 Política.

El ordenamiento territorial en Ecuador otorga a los cantones, como General Villamil Playas, autonomía política, administrativa y financiera. El Gobierno Autónomo Descentralizado (GAD) municipal es responsable de ejecutar política que garanticen una convivencia armónica y segura (Lindao Lázaro, 2014).

2.1.3.4 Cultura.

La identidad cultural de Playas se vincula con su tradición pesquera y su origen prehispánico. Diversas culturas como la Valdivia y la Huancavilca desarrollaron técnicas de navegación y fabricación de balsas, prácticas que aún perduran en la actualidad a través de cooperativas como Las Balsas (Vasco Escobar, et al., 2021).

2.1.3.5 Patrimonio Cultural.

Uno de los elementos patrimoniales más representativos del cantón es el antiguo edificio de la ex Academia Militar. Actualmente se encuentra en estado de

abandono, pero su reparación podría fortalecer el turismo y la identidad cultural de la zona (Quinteros Santos, 2016).

En Playas existen las balsas de tres boyas, que fueron utilizadas por muchos años, este posee un gran peso en la historia de los moradores, así como en la tradición, gracias a estas balsas zarparon en los mares y a la pesca (Quinteros Santos, 2016).

Las embarcaciones en Puerto Engabao, adornadas con iconografía religiosa, constituyen una expresión estética y cultural significativa que forma parte del diseño identitario del entorno local. Comprender este fenómeno es fundamental para reforzar el sentido de pertenencia dentro de la comunidad. (Quinteros Santos, 2016).

La colina conocida como "El Faro" funciona como mirador natural de la actividad pesquera y del paisaje costero. Su potencial turístico y paisajístico puede ser aprovechado como parte del diseño urbano y ambiental del entorno (Quinteros Santos, 2016).

2.1.3.6 Accesibilidad vial.

El sistema vial dentro del cantón es fundamental para que los diferentes asentamientos estén conectados y se facilite la movilidad de peatones y vehículos, acorde al Inventario Vial del Cantón Playas, el 20% de sus carreteras están en óptimas condiciones, el 10% en un estado aceptable y el 60% en malas condiciones (Gobierno Autónomo Descentralizado del Cantón Playas, 2014).

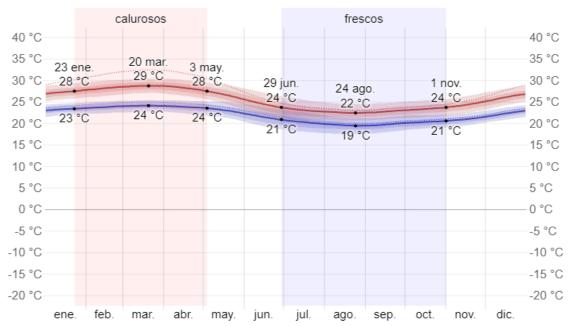
2.1.3.7 Movilidad.

Playas, por ser un destino turístico clave en la provincia del Guayas, recibe un flujo constante de visitantes y habitantes de zonas rurales que buscan el ingreso a servicios fundamentales, lo que resalta la importancia de una movilidad eficiente en la ciudad (Gobierno Autónomo Descentralizado del Cantón Playas, 2014).

Actualmente, el cantón de Playas dispone de un plan de movilidad diseñado para asegurar que todos sus habitantes puedan desplazarse de forma equitativa y accesible. Este plan considera las transformaciones sociales y económicas recientes

en la región, fomentando un sistema de transporte eficiente y adecuado a las demandas de la comunidad (Gobierno Autónomo Descentralizado del Cantón Playas, 2014).

El Sistema de Transporte Cantonal funciona como un modelo integrado que busca fortalecer la movilidad de las personas, su operación permite la circulación de un alto número de pasajeros a lo largo de rutas autorizadas con rapidez, seguridad y confianza (Gobierno Autónomo Descentralizado del Cantón Playas, 2014).


Este sistema se compone de corredores exclusivos y preferenciales destinados a las líneas de buses locales, tricimotos, transporte Inter cantonal e interprovincial, además de paraderos estratégicamente ubicados. Actualmente, el transporte público colectivo en Playas se encuentra bajo la administración de empresas privadas y la regulación de la CTE (Gobierno Autónomo Descentralizado del Cantón Playas, 2014).

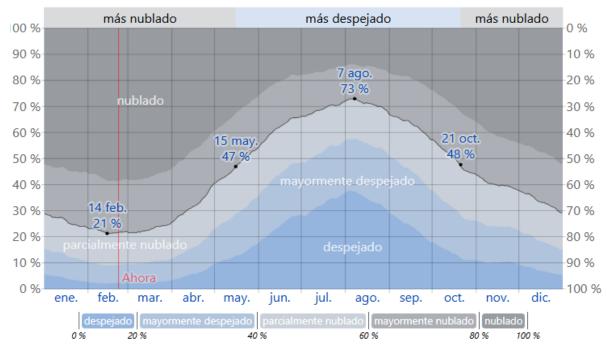
2.1.4 Análisis natural

2.1.4.1 Temperatura.

En Playas, las temperaturas varían entre 20°C y 29°C, alcanzando su punto máximo en marzo. Estas características climáticas resaltan la importancia de aplicar estrategias pasivas que incluyan protección solar, ventilación cruzada y el uso de materiales con alta reflectividad térmica (Weather Spark, 2024).

Ilustración 2: Temperatura

Nota. Es una gráfica que visualiza la temperatura en diferentes épocas del año.


Fuente: (Weather Spark, 2024). Weather skaprk (2025)

2.1.4.2 Nubes.

La variabilidad afecta la radiación solar directa, lo que condiciona el diseño de iluminación natural, cubiertas ventiladas y captación solar en meses despejados. La temporada con mayor cantidad de cielos despejados comienza alrededor del 15 de mayo y dura 5,2 meses, finalizando aproximadamente el 21 de octubre (Weather Spark, 2024).

El mes más despejado del año es agosto, mayormente despejado o parcialmente nublado el 71 % del tiempo. Por otro lado, la fase más nublada del año inicia alrededor del 21 de octubre, dura 6,8 meses y termina aproximadamente el 15 de mayo. El mes más nublado es febrero, durante el cual el cielo está completamente nublado o mayormente nublado el 78 % del tiempo (Weather Spark, 2024).

Ilustración 3: Nubes.

Nota. Representación gráfica de las nubes en Playas.

Fuente: (Weather Spark, 2024).

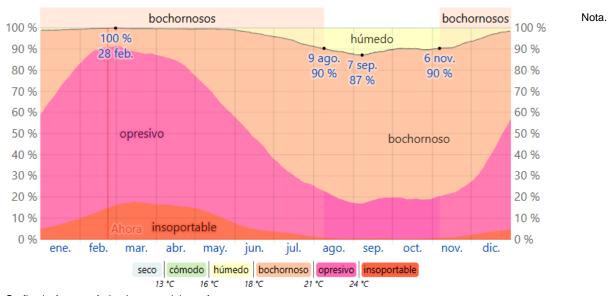
2.1.4.3 Precipitación.

El elevado número de días lluviosos entre enero y abril exige la implementación de cubiertas inclinadas, sistemas de canalización y recolección de agua pluvial, con una probabilidad superior al 24 % de que un día sea lluvioso. El mes que presenta la mayor cantidad de días con lluvia es febrero, registrando un promedio de 13,0 días con al menos 1 milímetro de precipitación (Weather Spark, 2024).

La temporada más seca se extiende por 8,7 meses, desde el 25 de abril hasta el 15 de enero. El mes con menos días lluviosos es agosto, con un promedio de solo 0,2 días con al menos 1 milímetro de precipitación. El mes con más días solo lluviosos es febrero, con un promedio de 13,0 días. En términos de tipos de precipitación, la lluvia es el más común a lo largo del año, con una probabilidad máxima del 49 % alcanzada el 28 de febrero (Weather Spark, 2024).

Ilustración 4: Precipitación.

Nota. La precipitación anual.

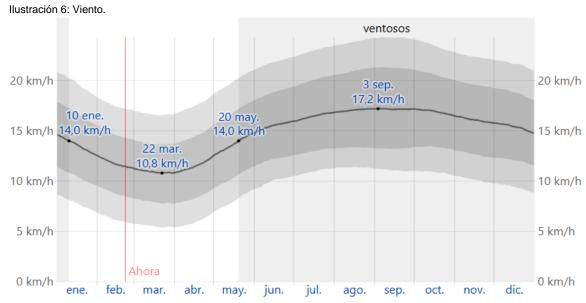

Fuente: (Weather Spark, 2024).

2.1.4.4 Humedad.

La sensación de humedad en las playas presenta variaciones leves y está determinada principalmente por el punto de rocío, el cual influye en la capacidad del sudor para evaporarse de la piel y así enfriar el cuerpo. Cuando el punto de rocío es bajo, el ambiente se percibe más seco; en cambio, si el punto de rocío es alto, la sensación de humedad es mayor. A diferencia de la temperatura, que experimenta cambios significativos entre el día y la noche, el punto de rocío se modifica de manera más gradual. Por ello, aunque la temperatura disminuya durante la noche, las condiciones de alta humedad suelen mantenerse también en las horas nocturnas (Weather Spark, 2024).

El período más húmedo de Playas abarca 9,1 meses, desde el 6 de noviembre hasta el 9 de agosto, durante los cuales la sensación de humedad es bochornosa, opresiva o incluso insoportable por al menos el 90 % del tiempo. El mes con más días bochornosos es marzo, con un promedio de 30,9 días de esta condición. El mes con menos días bochornosos es septiembre, con un promedio de 26,5 días con esta sensación (Weather Spark, 2024).

Ilustración 5: Humedad.



Grafica la época más bochornosa del cantón.

Fuente: (Weather Spark, 2024).

2.1.4.5 Vientos.

El viento en Playas, medido a una altura de 10 metros sobre el nivel del suelo, presenta una variabilidad significativa en cuanto a su velocidad y dirección a lo largo del año, influenciada por la topografía local. La temporada con mayor intensidad del viento dura aproximadamente 7,7 meses, desde el 20 de mayo hasta el 10 de enero, durante los cuales las velocidades promedio superan los 14,0 kilómetros por hora. El mes con mayor velocidad promedio del viento es septiembre, alcanzando 17,2 kilómetros por hora. En contraste, la temporada más calmada abarca 4,3 meses, entre el 10 de enero y el 20 de mayo, siendo marzo el mes más tranquilo con una velocidad promedio de 10,9 kilómetros por hora (Weather Spark, 2024).

Nota. La velocidad del viento a lo largo del año.

Fuente: (Weather Spark, 2024).

2.1.4.6 Sol.

A lo largo del año, la variación en la duración del día en Playas es muy reducida, con una diferencia de solo 16 minutos respecto a un promedio de 12 horas de luz diurna. En 2025, el día con menor cantidad de luz natural será el 20 de junio, con una duración de 11 horas y 58 minutos, mientras que el día con mayor duración de iluminación solar será el 21 de diciembre, alcanzando 12 horas y 17 minutos (Weather Spark, 2024).

Ilustración 7: Sol.

Nota. Ilustra las horas del sol.

Fuente: (Weather Spark, 2024).

En cuanto a los horarios de salida del sol, el amanecer más temprano tendrá lugar el 8 de noviembre a las 05:58, mientras que el más tardío se producirá el 18 de febrero a las 06:29, con una diferencia de 31 minutos entre ambos. De manera similar, la puesta del sol más temprana se registrará el 28 de octubre a las 18:11, mientras que la más tardía ocurrirá el 5 de febrero a las 18:42. Cabe destacar que en 2025 no se aplicará el horario de verano en Playas (Weather Spark, 2024).

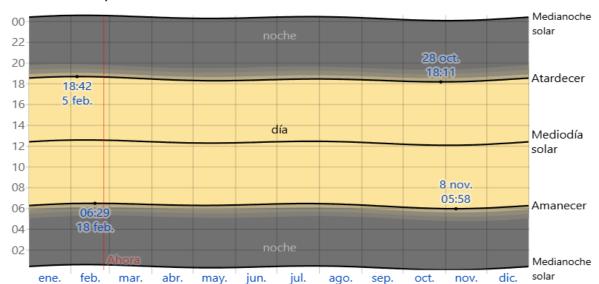
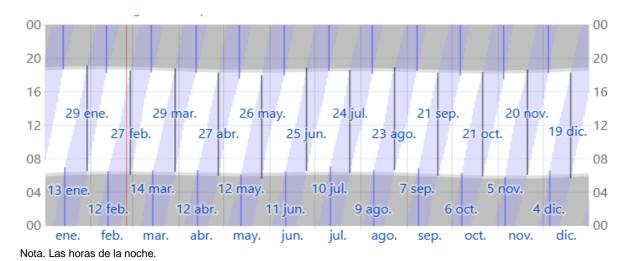


Ilustración 8: Puesta y salida del sol.

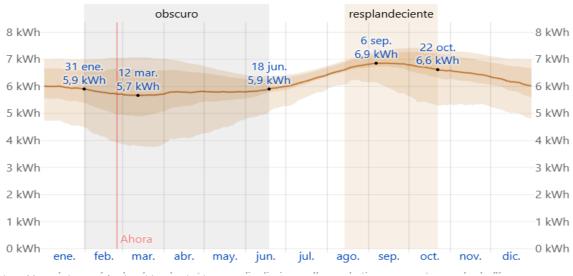

Nota. Ilustra las horas en el que el sol aparece y se esconde.

Fuente: (Weather Spark, 2024).

2.1.4.7 Luna.

La gráfica mostrada representa los eventos más importantes relacionados con la luna durante el transcurso del año. En el eje horizontal se disponen los días del calendario, mientras que en el eje vertical se exhiben las horas del día. Las zonas sombreadas indican los periodos en los que la luna permanece visible sobre el horizonte. Por otro lado, las barras de color gris representan las fases de luna nueva, y las barras de color azul señalan las fechas correspondientes a la luna llena (Weather Spark, 2024).

Ilustración 9: La luna.

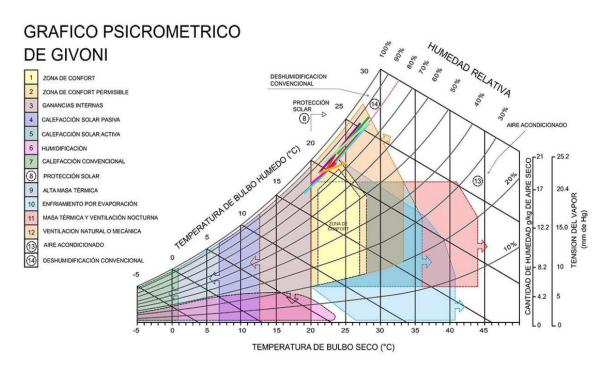


Fuente; (Weather Spark, 2024).

2.1.4.8 Energía Solar.

La radiación solar de onda corta que incide en Playas muestra variaciones estacionales moderadas. El intervalo de mayor intensidad lumínica se presenta entre el 14 de agosto y el 22 de octubre, con valores que superan los 6.6 kWh/m² diarios, alcanzando su pico máximo en septiembre con 6.8 kWh/m². Por otro lado, el período con menor radiación abarca desde el 31 de enero hasta el 18 de junio, registrando niveles inferiores a 5.9 kWh/m², y su mínimo anual se da en marzo con 5.7 kWh/m² (Weather Spark, 2024).

Ilustración 10: Energía solar.



Nota. Muestra la energía obtenida por el sol.

Fuente: (Weather Spark, 2024).

2.1.4.9 Diagrama de Givoni.

Ilustración 11: Diagrama de Givon.

Fuente: Weather Speark(2025).

Elaborado por: Benavides y Maridueña (2025).

Tabla 3: Análisis del Diagrama de Givoni.

	ENERO	FEBRERO	MARZO	ABRIL	MAYO	JUNIO	JULIO	AGOSTO	SEPTIEMBRE	OCTUBRE	NOVIEMBRE	DICIEMBRE
TEM MAX Go	28.0	28.0	29.0	29.0	28.0	24.0	24.0	23.0	23.0	24.0	25.0	27.0
TEMP MIN €%	23.0	24.0	24.0	24.0	24.0	21.0	20.0	19.0	20.0	20.0	21.0	22.0
HUM. MÁX%	81	82	81	83	82	81	82	81	83	82	81	83
HUM, MIN %	80	81	80	81	81	80	80	81	80	81	73	80

Fuente: Weather Speark(2025).

Elaborado por: Benavides y Maridueña (2025).

El análisis del confort térmico mediante el diagrama de Givoni indica al analizar su temperatura y humedad los resultados arrojan que la mayor parte de los meses se encuentra en ventilación natural o mecánico y los restantes se ubican en la zona de confort permisible.

Existen meses que se encuentran en una zona permisible de confort, pero la gran mayoría se sitúa en ventilación natural y mecánica, las estrategias se ejecutarán en todos los meses para llegar a la zona de confort, se aplicarán estrategias como ventilación natural y cubiertas de sándwich

2.1.4.10 Ecosistemas.

Tabla 4: Ecosistema.

Tipos de ecosistema	Descripción	Ilustración
Ecosistema costero y marinos	Incluyen playas de arena, plataforma continental marina con profundidades entre 0 y -10 metros, y ecosistemas submareales. La zona está influenciada por corrientes oceánicas ecuatoriales y la corriente de Humboldt.	
Ecosistema de manglar litoral	Es uno de los ecosistemas predominantes, con presencia de manglar rojo (Rhizophora mangle) que regula el flujo de mareas y sirve de refugio y alimento a muchas especies acuáticas y aves. Este ecosistema es fundamental en la zona y está protegido en áreas cercanas como el Refugio de Vida Silvestre Manglares El Morro, que incluye bosques de manglar, esteros y canales naturales.	
Bosque bajo abustal caduco tropical seco	En el entorno terrestre de Playas de Villamil se encuentran bosques secos y vegetación característica de clima semiárido, con suelos arcillosos y areniscas calcáreas de origen fluvio-marino.	
Duana y cordones arenosos	La franja litoral tiene cordones de dunas que forman parte del paisaje costero y contribuyen a la dinámica geomorfológica de la zona.	

Elaborado por: Benavides y Maridueña (2025).

2.1.4.11 Flora.

Tabla 5: flora.

Nombres	Familia	llustración
Mangle Botoncillo	Combrateceae	

Mangle Prieto	Acanthacea	
Muyuyo	Boraginaceae	
Alacrancillo	Boragináceas	
Margaritas	Asteraceae	
Confiturillas	Verbenaceae	
Pimpollo de tomate	Solanaceae	

Pepino Cimarrón	Cucurbitaceae	
Tomatillo	Solanáceas	
Hibisco Marítimo	Malvaceae	6
Campanillas	Convolvuláceas	
Flor de mayo	Apocynaceae	
Centrosema	Fabaceae	

Ojos de Venado	Faboideae	
Frijoles de Monte	Fabaceae	
Tribu Poeae	Poaceae	
Bejuco de mar	Convolvulaceae	

2.1.4.12 Fauna.

Tabla 6: Fauna.

Nombres	Familia	Ilustración
Fragata Tijereta	Frefatidae	
Ostero Americano	Haematopodidae	

Zanate Mexicano	Corvidae	
Pelicano café	Pelecanidae	
Garza Dedos Dorados	Ardeidae	
Zarapito Trinador	Scolopacidae	
Cangrejo Playero	Ocypodidae	
Playero Blanco	Scolopacidae	
Almeja Catarina	Pactinidae	

Garza Blanca	Ardeidae	
Gaviota Meridional	Laridae	
Agua Mala	Physaliidea	A Sign mass Give
Lobo Marino	Otáridos	
Chichicuilote	Charadriidae	
Playero Semipalmeado	Scolopacidae	

Saltapared Común Sureño	Troglodytidae	
Charrán Real	Sternidae	
Pez Erizo Pocoso	Diodontidae	
Delfín Común	Delphinidae	
Botete Diana	Tetraodontidae	
Cangrejo Nadador	Portunidae	

Palometa	Estromateidos	100
Sierra del Pacífico	Scombridae	
Ronco Roncacho	Heamulidae	
Arca pacifica	Arcidae	
Gaviota de Galápagos	Laridae	

2.2 Marco Teórico

2.2.1 Base teórico para inicio de la investigación (25 referentes teóricos + 5 referentes de la universidad)

Tabla 7: Hexacube: utopía de plástico. Del hábitat turístico prefabricado y modular a la "casa evolutiva" itinerante.

	Hexacube: utopía de plástico. Del hábitat turístico	Tipo	Categoría	
_	prefabricado y modular a la	Arquitectónico- modular		
Tema	"casa evolutiva" itinerante	Año	Artículo	
		2024		
	Siendo plástico como u	uno de sus principa	ales materiales, por	
	su adaptabilidad sobre molo	des desde fábrica	, permite un fácil	
	mantenimiento, transporte y	temporalidad, el s	sistema Hexacube,	
	espacios individuales con la	distancia satisfac	ctoria para un ser	
	humano, un alto de 2.5 metros	y 2.5x2.5 metros o	de lados, son cubos	
Descripción	con un volumen cercano a	los 15m3, una v	vivienda capaz de	
	adaptarse y expandirse según diferentes necesidades (Solano Rojo,			
	2024).			
	Internamente se configura de elementos prefabricados, que			
	proveen de flexibilidad sobre los espacios, lo que permite que un			
	espacio no se bloquee en un único uso en particular, lo que			
	desemboca en la vivienda ideal según las necesidades de cada			
	usuario (Solano Rojo, 2024).			
Fortalezas	Alta adaptabilidad y flexibilidad espacial; facilidad para su montaje y desmontaje; posibilidad de expansión y personalización; movilidad; bajo mantenimiento.			
Debilidades	Limitada protección térmica, durabilidad condicionada por exposición UV, escasa integración con sistemas bioclimáticos pasivos.			
Aplicaciones al proyecto	Inspiración para sistemas modulares ligeros y autoportantes, ideales para viviendas de emergencia en zonas vulnerables y útil para desarrollo de soluciones desmontables, transportables.			
Palabras				
claves	Prefabricación, modularidad, n	novilluau		
Flahorado por Bena	vides v Maridueña (2025).			

Tabla 8: Arquitectura modular en el diseño urbano de la comunidad indígena Shipibo Konibo de Cantagallo – Lima 2023.

	Arquitectura modular en el	Tipo	Categoría
Tema	diseño urbano de la comunidad indígena Shipibo Konibo de Cantagallo – Lima 2023	Arquitectónico- modular Año	Posgrado
	lava etimo el é a constitutivo	2023	
	Investigación cualitativa	•	
	modulares prefabricados en	la comunidad S	Shipibo Konibo de
	Cantagallo, propone módulos	habitacionales fle	exibles, elaborados
	con madera y acero, que inte	egran técnicas de	autoconstrucción y
	participación ciudadana. Ir	ncluye estrategia	s de ampliación
Descripción	progresiva, adaptación a terrenos irregulares y respeto a prácticas		
Decomposit	culturales indígenas (Rodriguez Silva, 2023).		
Fortalezas	Integración de técnicas ancestrales, uso de materiales locales, sistema incremental según las necesidades de las familias, enfoque comunitario		
Debilidades	Dependencia de mano de obra especializada para ensamblaje de módulos, limitada resistencia estructural ante sismos de alta intensidad		
Aplicaciones al proyecto	Uso de materiales resistentes a humedad y salinidad, adaptación de módulos a suelos inundables mediante estructuras elevadas		
Palabras claves	Habitabilidad, autoconstrucción, materiales locales		

Tabla 9: De la "Quesana" tradicional a un sistema modular de paneles aislantes de Totora.

	De la "Quesana" tradicional a	Tipo	Categoría	
	un sistema modular de paneles aislantes de Totora	Arquitectónico-		
Tema		modular Año	Artículo	
		2024		
	Se desarrolló un siste	-	anolos aislantos a	
		·		
	partir de la quesana tradicio		·	
	mejorando su rigidez y propi			
	formados por dos quesar		·	
	artesanalmente y ensamblada	s sobre una estruc	tura de madera con	
Descripción	columnas en sección "H" y v	viguetas en "T" in	vertida. El sistema	
	permite el montaje y desmonta	ije con herramienta	s básicas, facilita la	
	prefabricación y el transporte,	y se adapta a mu	ros, techos y pisos	
	(Jiménez-Dianderas, et al., 2024).			
	Los paneles presentan una conductividad térmica promedio			
	de 0.047 W/mK, superando el rendimiento de las cabañas			
	altoandinas tradicionales y cumpliendo con normativas de			
	aislamiento. El prototipo de vivienda construido (20 m²) demostró			
	eficacia en clima frío y ventos	o, con bajo peso y	materiales locales	
	(Jiménez-Dianderas, et al., 2024).			
Fortalezas	Integración de técnicas ancestrales, uso de materiales locales, sistema incremental según las necesidades de las familias, enfoque			
	comunitario.			
D 1 11 1	Puntos de unión panel-ma	-		
Debilidades	hermeticidad; absorción de limitada resistencia estructura			
	limitada resistencia estructural frente a cargas elevadas o s fuertes; exposición directa de la totora puede reducir la durabilidad.			
	no se protege adecuadamente		iclamiento térmica	
Aplicaciones	Inspiración para incorporar natural, técnicas de ensar			
al proyecto	construcción rápida y adaptab			
Palabras	Totora, panel modular, aislami	iento térmico		
claves	video v Moriduoão (2025)			

Tabla 10: Diseño arquitectónico de un prototipo modular de huerto vertical en el cantón Milagro.

Tema	Diseño arquitectónico de un prototipo modular de huerto	Tipo	Categoría
	vertical en el cantón Milagro	Arquitectónico- modular Año	Pregrado (ULVR)
		2024	
	El proyecto plantea ur	n prototipo modula	r de huerto vertical
	para zonas urbanas del cantó	n Milagro, compue	sto por módulos de
	madera con estructura hexago	onal y diseño tipo la	aberinto. El sistema
	es prefabricado, permite ensa	mblaje y expansió	n según el espacio
	disponible y las necesidades	s del usuario. Inc	orpora un sistema
Descripción	automatizado de riego por goteo para optimizar el uso del agua y su		
Descripcion	mantenimiento (Saltos Bajaña	, 2024).	
Fortalezas	Modularidad y flexibilidad desmontaje; uso eficiente autosuficiencia alimentaria.		
Debilidades	Limitada protección ante vandalismo en espacios públicos; dependencia de madera como material principal lo que es posible deterioro por humedad o plagas si no se trata adecuadamente.		
Aplicaciones al proyecto	El desarrollo de soluciones m viviendas emergentes, especia de autosuficiencia.		-
Palabras claves	Huerto vertical, modularidad, sostenibilidad		

Tabla 11: Diseño arquitectónico de un albergue temporal modular para jóvenes en situación de calle en el Sur de Guayaquil.

	Diseño arquitectónico de un	Tipo	Categoría
	albergue temporal modular para jóvenes en situación de	Arquitectónico- modular	
Tema	calle en el Sur de Guayaquil	Año	Pregrado (ULVR)
		2024	
	Albergue modular prefa	abricado para jóve	nes en situación de
	calle, con módulos estructural	es diseñados para	rápida instalación y
	desmontaje. La propuesta in	cluye espacios mu	ultifuncionales para
Descripción	alojamiento, áreas de socializ	ación y servicios b	ásicos, con énfasis
Docompositi	en la flexibilidad espacial para	a adaptarse a difei	rentes necesidades
	(Agraces Briones & Peñaherre	era Palma, 2024).	
	El sistema constructivo	o utiliza materiales	locales y técnicas
	de construcción seca para optimizar tiempos y costos, incorporando		
	ventilación natural y protección climática adecuada al contexto		
	urbano de Guayaquil. El diseño considera aspectos de seguridad,		
	accesibilidad y confort ambiental para una mejor calidad de vida de		
	los usuarios (Agraces Briones & Peñaherrera Palma, 2024).		
Fortalezas	Uso de materiales locales y prefabricados; rapidez en montaje; integración de espacios sociales y de atención; diseño adaptado al clima y contexto urbano.		
Debilidades	Limitada capacidad para adaptarse a grandes variaciones climáticas extremas; necesidad de gestión comunitaria para funcionamiento óptimo.		
Aplicaciones al proyecto	Para el diseño de viviendas emergentes modulares con enfoque social y comunitario, especialmente para poblaciones vulnerables.		
Palabras claves	Albergue juvenil, Elemento estructural, Diseño arquitectónico, Arquitectura		

Tabla 12: Prototipo de vivienda modular rural en madera, ambientalmente sostenible, utilizando maderas pioneras colombianas.

	Prototipo de vivienda	Tipo	Categoría
Tema	modular rural en madera, ambientalmente sostenible, utilizando maderas pioneras colombianas	Arquitectónico- modular Año	Posgrado
		2022	
	El proyecto desarrolla	un prototipo de viv	enda rural modular
	utilizando maderas pioneras	colombianas, sele	eccionadas por su
	rápido crecimiento, disponibil	idad y característi	cas sostenibles. El
Descripción	diseño se basa en módulos p	refabricados de m	adera, que pueden
·	ensamblarse fácilmente en	sitio, permitiendo	flexibilidad en la
	configuración y ampliación de	los espacios. El s	istema constructivo
	prioriza la eficiencia energétic	a, el bajo impacto	ambiental y el uso
	racional de recursos renovables (Tovar Villamil, 2022).		
	La propuesta integra soluciones bioclimáticas pasivas, como		
	ventilación cruzada, protección solar y aislamiento natural,		
	adaptándose a las condiciones climáticas rurales de Colombia.		
	Incluye ilustraciones, diagramas y fotografías que detallan el proceso		
	constructivo y la adaptabilidad del sistema (Tovar Villamil, 2022).		
Fortalezas	Uso de materiales renovables y locales (maderas pioneras), lo que reduce la huella ambiental y los costos de transporte; modularidad que facilita el montaje, estrategias bioclimáticas.		
Debilidades	La durabilidad de algunas maderas pioneras puede ser menor frente a maderas tradicionales, dependencia de la disponibilidad local.		
Aplicaciones al proyecto	Uso de materiales locales y sostenibles, la facilidad de montaje y adaptación a diferentes terrenos y climas, y la integración de soluciones bioclimáticas pasivas.		
Palabras claves	Madera ; Vivienda ; Modular ; Sostenibilidad		

Tabla 13: Diseño de conexiones metálicas genéricas de una vivienda prefabricada, modular y desmontable.

	Diseño de conexiones	Tipo	Categoría
metálicas genéricas de una vivienda prefabricada, modular y desmontable	Arquitectónico- modular Año 2022	Posgrado	
	El proyecto desarrolla	un sistema modu	lar prefabricado de
	vivienda en acero, integrando	una conexión unive	ersal (H-1) capaz de
	unir módulos en 63 config	juraciones básicas	s y muchas más
Descripción	combinadas. La estructura e	s completamente	atornillada, lo que
Z C C C I P C C C I	facilita el montaje, desmontaje y transporte (Cabral Vasquez Del		
	Mercado, 2022).		
Fortalezas	Modularidad y multi-adaptabilidad; rapidez y facilidad de montaje/desmontaje; transporte sencillo y ligero; compatibilidad universal entre módulos; validación estructural rigurosa.		
Debilidades	Dependencia de herramientas y mano de obra técnica para el montaje; posible costo inicial alto por el desarrollo de conexiones especializadas; requiere precisión en fabricación para asegurar compatibilidad.		
Anligaciones	Inspiración para refugios em		
Aplicaciones al proyecto	que permitan rapidez, flexibilidad; referencia para el empleo de sistemas prefabricados metálicos.		
Palabras claves	Conexión universal, estructura metálica, módulos multi-adaptables		

Tabla 14: Aplicación de un enfoque híbrido de Dirección de Proyectos para la construcción de un campamento modular. Caso: Aeropuerto en la región Sur del Perú.

	Aplicación de un enfoque híbrido de Dirección de	Tipo	Categoría
Tema Proyectos para construcción de campamento modular. C	Proyectos para la	Arquitectónico- modular Año 2024	Posgrado
		tiliza módulos	prefabricados y
	transportables, diseñados pa	ara montaje rápid	o y adaptación a
	diferentes necesidades de ocu	upación y servicios	. El enfoque híbrido
Descripción	permitió una gestión eficient	te de los cambios	s, optimización de
·	recursos y en poco tiempo, integrando procesos colaborativos y		
	control de calidad en cada fase del proyecto (Marcos Quispe, et al.,		
	2024).		
Fortalezas	Flexibilidad en la gestión del proyecto; rapidez de montaje y adaptación; optimización de recursos y tiempos; control de calidad y mejora continua.		
Debilidades	Requiere alta coordinación entre equipos multidisciplinarios; dependencia de proveedores especializados; posibles sobrecostos si no se controla adecuadamente el alcance.		
Aplicaciones al proyecto	Inspiración para gestión de proyectos de refugios modulares en emergencias con metodologías flexibles; referencia para la obtención sobre tiempos de respuesta y buen uso de recursos.		
Palabras claves	Enfoque híbrido, campamento modular, gestión de proyectos		

Tabla 15: Análisis y diseño estructural de un puente modular con conexiones de rápido ensamble para caminos de acceso en la industria petrolera.

	acceso en la industria	Tipo	Categoría	
Tema		Arquitectónico- modular Año 2024	Posgrado	
	El trabajo desarrolla	y valida el diseño	estructural de un	
	puente modular tipo armadu	ra, destinado a c	aminos de acceso	
	temporales en zonas petro	oleras. El sistem	a utiliza módulos	
Descripción	prefabricados de acero, con	ectados mediante	uniones de rápido	
	ensamble, permitiendo montaj	e y desmontaje efi	ciente, el diseño se	
	apoya en modelado por elementos finitos y simulaciones			
	estructurales bajo normativas mexicanas e internacionales (Ramos			
	Sánchez, 2024).			
Fortalezas	Modularidad y adaptabilidad a distintos sitios y longitudes; validación estructural rigurosa; reducción de tiempos y costos en obra.			
Debilidades	Requiere precisión en la fabricación de módulos y conexiones; dependencia de equipos y herramientas especializadas para el ensamble.			
Aplicaciones al proyecto	Inspiración para el diseño de refugios emergentes con sistemas modulares de rápido ensamble.			
Palabras claves	Puente modular, conexiones rápidas, industria petrolera			

Tabla 16: El diseño biodigital en el proceso proyectual: metodología alternativa para la enseñanza del diseño.

	El diseño biodigital en el	Tipo	Categoría
Tema	proceso proyectual: metodología alternativa para la enseñanza del diseño	Arquitectónico- modular Año	Artículo
		2022	
	El diseño biodigital	combina princip	oios biológicos y
	tecnológicos para crear sist	emas arquitectóni	cos inteligentes y
	adaptativos. Utiliza algoritmos	s evolutivos y técni	icas de inteligencia
Descripción	artificial para optimizar la efici	iencia energética, l	a habitabilidad y la
	sostenibilidad ambiental de lo	s proyectos, por lo	que, este enfoque
	permite modelos paramétricos	que imitan proces	os biológicos como
	la fotosíntesis o la autorregulación térmica, produciendo edificios		
	capaces de interactuar con su entorno de manera autónoma		
	(Estévez y Fraile Narváez, 2022).		
Fortalezas	Integración de procesos computacionales para evaluación continua y mejora; potencial para un bajo impacto ambiental y mejorar calidad de vida.		
Debilidades	Necesita alta especialización técnica y recursos computacionales avanzados; dependencia de datos precisos y algoritmos bien calibrados.		
Aplicaciones al proyecto	Incorporación de tecnologías digitales y biológicas en el diseño modular; metodologías innovadoras en la enseñanza y desarrollo de proyectos arquitectónicos sostenibles.		
Palabras claves	Diseño biodigital, bioaprendiza	aje, arquitectura so	stenible

Tabla 17: El diseño biodigital en el proceso proyectual: metodología alternativa para la enseñanza del diseño.

	El diseño biodigital en el	Tipo	Categoría
Tomo	proceso proyectual: metodología alternativa para	Bio-climático	
Tema	la enseñanza del diseño	Año	Artículo
		2023	
	La arquitectura del p	aisaje en Monterí	a se centra en el
	análisis y valoración de las c	ondiciones materia	ales, ambientales y
	formales del entorno para e	el diseño de espa	acios abiertos que
Descripción	integren naturaleza y edifica	ción. Se utilizan e	especies vegetales
•	nativas y materiales locales pa	ıra mejorar el confo	rt térmico mediante
	sombra, regulación de hume	dad y reducción o	de la velocidad del
	viento (Stanford-Manjarrés, 20	023).	
	La conservación de la	vegetación exister	nte para la creación
	de biodiversidad y pulmones verdes urbanos que actúan como		
	reguladores climáticos, lo que permite que la integración del paisaje		
	contribuya a la eficiencia energética, ante una menor necesidad de		
	climatización artificial, y promueve la educación ambiental (Stanford-		
	Manjarrés, 2023).		
Fortalezas	Uso de vegetación nativa para mejorar el microclima y confort térmico; conservación y respeto por el ecosistema local, aumentando la biodiversidad; creación de espacios públicos saludables que fomentan la interacción social.		
Debilidades	Mantenimiento continuo para preservar la vegetación y evitar degradación; implica costos iniciales elevados en la implementación y diseño paisajístico; limitaciones en zonas urbanas densas para integrar áreas verdes significativas.		
Aplicaciones al proyecto	Incorporación de vegetación na el confort térmico en vivienda sombra y ventilación natur energética.	s emergentes; esti	ategias pasivas de
Palabras claves	Diseño biodigital, bioaprendiza	aje, arquitectura so	stenible

Tabla 18: Análisis Geoespacial en la Arquitectura Bioclimática: Propuesta de análisis por sobreposición de capas para determinar Estrategias de Diseño Bioclimático.

	Análisis Geoespacial en la Arquitectura Bioclimática: Propuesta de análisis por	Tipo	Categoría	
		Bio-climático		
Tema	sobreposición de capas para determinar Estrategias de	Año	Artículo	
	Diseño Bioclimático	2024		
	México presenta una g	ıran diversidad clim	nática que se divide	
	en varias regiones con cara	cterísticas térmica	s y pluviométricas	
	distintas, influenciadas por fac	ctores geográficos	como altitud, latitud	
Descripción	y barreras montañosas, este	modelo clasifica e	el país en regiones	
·	climáticas que incluyen climas	cálidos húmedos,	secos, templados y	
	fríos, cada uno con variaciones específicas de temperatura,			
	precipitación, humedad y viento (Aranda Barajas, 2024).			
Fortalezas	Adaptación regionalizada que responde a la diversidad climática de México; uso de datos históricos y proyecciones climáticas para cambios futuros; definición clara de estrategias pasivas específicas para cada tipo de clima.			
Debilidades	La complejidad del modelo dificulta su aplicación práctica en proyectos pequeños; requiere datos climáticos precisos y actualizados, que no siempre están disponibles en todas las zonas; las estrategias pasivas son insuficientes en condiciones extremas o cambios climáticos acelerados.			
Aplicaciones al proyecto	Facilita la planificación de viviendas que puedan adaptarse a condiciones climáticas futuras, aumentando su durabilidad y funcionalidad.			
Palabras claves	Análisis climático, diseño bioclimático, regiones climáticas			

Tabla 19: Jaime López de Asiaín: del Seminario de Arquitectura Bioclimática al Equipo Solar Decathlon de la Universidad de Sevilla... a través de una maestría cordial.

	Jaime López de Asiaín: del	Tipo	Categoría
	Seminario de Arquitectura Bioclimática al Equipo Solar	Bio-climático	
Tema	Decathlon de la Universidad de Sevilla a través de una	Año	Artículo
	maestría cordial	2023	
	Jaime López de A	siaín fue pionero	en arquitectura
	bioclimática en España, des	arrollando proyect	os clave como el
	acondicionamiento bioclimátio	co, donde implem	nentó sistemas de
Descripción	ventilación natural, sombreado	adaptativo y matei	riales de alta inercia
	térmica, su trabajo incluyó prot	otipos de viviendas	sociales en Osuna
	que redujeron un 30% el cons	sumo energético m	ediante estrategias
	pasivas, además, impulsó	el Equipo Solar	Decathlon de la
	Universidad de Sevilla, su	metodología com	binaba simulación
	computacional con monitoriza	ción en obra (Herre	era Limones, 2023).
Fortalezas	Integración de investigación académica y práctica profesional en proyectos reales; Tecnologías low-tech replicables: uso de ladrillos perforados en fachadas para ventilación natural, técnica aplicada en 12 colegios públicos andaluces; desarrollo de sistemas pasivos de bajo costo para climatización natural.		
Debilidades	Muchos de sus prototipos como los colegios bioclimáticos, no se replicaron masivamente por falta de políticas públicas; Dependencia de software propietario: El SPN requería estaciones meteorológicas locales para calibrarse, limitando su uso fuera de Andalucía.		
Aplicaciones al proyecto	Su metodología de integración de clima, materiales y uso social desde el inicio es clave para viviendas emergentes en Villamil Playas.		
Palabras claves	Diseño pasivo, arquitectura bioclimática, Solar Decathlon		

Tabla 20: Arquitectura bioclimática en el diseño de espacios de educación primaria para la ciudad de Otuzco - La Libertad 2023.

	Arquitectura bioclimática en	Tipo	Categoría
_	educación primaria para la	Bio-climático	
Tema		Año	POSGRADO
		2024	
	El proyecto diseña un	colegio en Otuzco	de clima semiárido,
	temperatura media: 15°C,	usando estrate	gias bioclimáticas
	validadas con software Climat	te Consultant 6.0 e	e incluye: muros de
Descripción	tierra compactada (40 cm de	e espesor) para e	estabilidad térmica;
2000	cubiertas ventiladas con tejas	de arcilla y cámara	as de aire de 20 cm
	que reducen la ganancia de o	calor; patios centra	ales con vegetación
	nativa para microclimas	húmedos; orie	ntación Noreste-
	Suroeste para la captación sol	ar en invierno y mir	nimizarla en verano,
	este modelo redujo un 35% el	consumo energétic	co en simulaciones,
	comparado con construccion	es tradicionales d	e la zona (Arriaga
	Rodriguez, 2024).		
Fortalezas	Materiales locales de bajo co usados en Otuzco cuestan u cubierta ventilada mantuvo interior/exterior en verano.	un 60% menos qu	ue el concreto; La
	Mantenimiento intensivo: los cada 2 años en zonas h		
Debilidades	prolongados: La tierra compac	•	
Aplicaciones al proyecto	Cubiertas ventiladas modula cámaras de aire y materiales l	-	on de techos con
Palabras claves	Arquitectura, Bioclimatología,	Impacto ambiental	

Tabla 21: Diseño bioclimático de una vivienda en Santa Rosa de Lima, OAX.

	Diseño bioclimático de una vivienda en Santa Rosa de	Tipo	Categoría
	Lima, OAX	Bio-climático	
Tema		Año	POSGRADO
		2024	
	Desarrolla un diseño bi	oclimático para una	a vivienda en Santa
	Rosa de Lima, Oaxaca, con	siderando las con	diciones climáticas
	específicas de la región po	r el confort térmi	ico y la eficiencia
Descripción	energética, el estudio parte d	del análisis de par	ámetros climáticos
	históricos, incluyendo tempe	ratura, humedad,	radiación solar y
	viento, para definir estrateg	gias pasivas ada _l	otadas al entorno
	(Morales Ojeda, 2024).		
	El diseño incorpora sist	temas de control so	lar mediante aleros
	y vegetación estratégica que r	minimiza la gananc	ia térmica en horas
	de alta insolación, especialme	ente en verano, se	utilizan materiales
	locales con buena inercia térmica para estabilizar las temperaturas		
	interiores, y ventanas ubicadas en fachadas opuestas facilitan la		
	ventilación natural (Morales Ojeda, 2024).		
Fortalezas	Su orientación Norte-Sur que favorece la ventilación cruzada; la incorporación de materiales locales con alta inercia térmica aporta estabilidad térmica.		
Debilidades	La dependencia de la correcta instalación y mantenimiento de los sistemas de control solar, como aleros y vegetación; la disponibilidad y calidad de estos pueden variar en zonas remotas o afectadas por desastres.		
Aplicaciones al proyecto	Las estrategias de orientación el diseño; los sistemas de o vegetación.	-	
Palabras claves	Vivienda bioclimática, ecotecn	ologías, confort	

Tabla 22: Aportes al diseño de espacios energéticamente eficientes en edificios existentes. Reciclando el edificio de Postgrado de la Universidad Americana conforme parámetros físicos bioclimáticos.

	Aportes al diseño de	Tipo	Categoría
Tema	espacios energéticamente eficientes en edificios existentes. Reciclando el edificio de Postgrado de la	Bio-climático Año	POSGRADO
	Universidad Americana conforme parámetros físicos bioclimáticos	2021	
	El estudio es sobre la r	_	
	Postgrado de la Universidad	Americana mediar	ite la aplicación de
	parámetros físicos bioclimá	áticos que mejo	ran su eficiencia
Descripción	energética y confort interior, s	se realiza un anális	sis detallado de las
·	condiciones climáticas locale	es, para la adapta	abilidad del diseño
	arquitectónico y las estrategia	as constructivas de	el edificio existente
	(Duré Ruiz Díaz, 2021).		
	Evalúa el impacto de fachadas verdes y materiales de alta		
	inercia térmica para una estabilidad de la temperatura interior y		
	mejorar la calidad ambiental, el proyecto utiliza herramientas de		
	simulación energética que validan las estrategias propuestas,		
	logrando una reducción significativa en la demanda de energía para		
	climatización y una mejora en el confort térmico de los usuarios (Duré		
	Ruiz Díaz, 2021).		
Fortalezas	Adaptación de un edificio existente sobre la optimización energética sin necesidad de reconstrucción total; incorporación de ventilación natural cruzada y fachadas verdes.		
Debilidades	La rehabilitación de edificios existentes requiere un diagnóstico previo detallado y acceso a la estructura original; dependencia de simulaciones energéticas y software especializado dificulta la aplicación debido a la falta de personal capacitado.		
Aplicaciones al proyecto	Las estrategias de ventilación el diseño modular que mejora de materiales con alta inercia	n el confort térmic	
Palabras claves	Simulaciones energéticas, ada	aptación, demanda	energética

Tabla 23: Propuesta de intervención bioclimática en el Edificio Cronos para obtener la certificación ambiental EDGE©.

	Propuesta de intervención	Tipo	Categoría
_	bioclimática en el Edificio Cronos para obtener la	Bio-climático	
Tema	certificación ambiental EDGE©	Año	POSGRADO
		2024	
	Busca un óptimo des	sempeño energétio	o y ambiental del
	edificio para que cumpla con la	a certificación EDG	E, esta certificación
	exige un ahorro mínimo del 2	20% en consumo	de energía, agua y
Descripción	carbono que incorpora en mat	teriales respecto a	un edificio estándar
	local, la propuesta incluye un a	análisis climático de	etallado del entorno
	del Edificio Cronos, para la implementación de estrategias pasivas		
	como mejora en la envolvente térmica, ventilación natural, protección		
	solar y uso eficiente del agua (Castro Boschini, 2024).		
Fortalezas	Enfoque integral que combina análisis climático local con simulaciones energéticas avanzadas mediante la plataforma EDGE; uso de estrategias pasivas y materiales con bajo carbono.		
Debilidades	La implementación de la certificación EDGE requiere un proceso riguroso de documentación, simulación y auditoría; reducción de carbono incorporado incrementa costos iniciales.		
Aplicaciones al proyecto	La metodología de análisis y simulación energética; la certificación EDGE ofrece un marco para la integración de estrategias pasivas de diseño y selección de materiales sostenibles.		
Palabras claves	Solución habitacional, certifica	ación ambiental, ve	ntilación natural

Tabla 24: La sustentabilidad en el proceso de diseño arquitectónico, enfoque desde el pensamiento complejo.

	La sustentabilidad en el proceso de diseño	Tipo	Categoría
Tama	arquitectónico, enfoque	Bio-climático	
Tema	desde el pensamiento complejo	Año	POSGRADO
		2021	
	Según la tesis de poso	grado revisa el proy	vecto arquitectónico
	como un sistema complejo	y adaptativo, c	apaz de anticipar
	escenarios futuros inciertos	y promover solu	iciones flexibles y
Descripción	resilientes, la metodología incl	uye fases de anális	is y diagnóstico que
2000	integran variables ambientales	s, sociales y tecnol	ógicas, así como la
	conceptualización y desarrollo técnico constructivo con visión		
	prospectiva (Rivas Jiménez, 2021).		
Fortalezas	Aplicación del pensamiento complejo en el diseño arquitectónico que permite múltiples variables y actores en el proceso; fomenta la anticipación de escenarios futuros y la flexibilidad en el diseño.		
Debilidades	Complejidad inherente al enfo práctica en contextos de emer son limitados; necesidad pensamiento complejo.	gencia donde el tie	
Aplicaciones al proyecto	Incorpora el pensamiento prototipos flexibles y adaptativ y aceptadas por las comunida	os; facilita solucion	
Palabras claves	Sustentabilidad, pensamiento	complejo, variable:	s ambientales

Tabla 25: Enfoques del ecourbanismo para ciudades de América Latina.

	Enfoques del ecourbanismo	Tipo	Categoría	
	para ciudades de América Latina	Bio-climático		
Tema		Año	POSGRADO	
		2021		
	Este enfoque se funda	menta en la necesi	dad de reorientar el	
	desarrollo urbano hacia mo	odelos sostenibles	que integren la	
	conservación de los ecosiste	emas, la resiliencia	a frente al cambio	
Descripción	climático y la mejora de la calid	dad de vida urbana;	combina principios	
·	de diseño ambiental, planific	ación urbana y g	estión de recursos	
	naturales para promover	ciudades compa	ctas, diversas y	
	autosuficientes, que minimice	n el impacto ambie	ental y fomenten la	
	cohesión social (Torres-Lima,	et al., 2021).		
	Se promueven estrate	gias como la cread	ción y conservación	
	de espacios verdes urbanos,	de espacios verdes urbanos, sistemas de drenaje sostenible contra		
	inundaciones, edificaciones e	eficientes en cons	sumo energético y	
	sistemas de transporte púl	blico que reduzc	an las emisiones	
	contaminantes, además, se de	estaca la importand	cia de la biofilia y el	
	paisajismo ecológico a favor o	de la conexión entr	e las personas y la	
	naturaleza (Torres-Lima, et al.	, 2021).		
Fortalezas	Capacidad de integración, conservación de ecosistemas y la gestión sostenible de recursos naturales; énfasis en la cohesión social y la participación ciudadana.			
Debilidades	Alta dependencia de recursos económicos y capacidades institucionales; complejidad en la integración de múltiples actores y disciplinas.			
Aplicaciones al proyecto	Viviendas emergentes modu espacios verdes y sistemas pa			
Palabras claves	Ecourbanismo, conservación,	planificación urban	a	

Tabla 26: Del interés sustentable al regenerativo: consideraciones a partir de proyectos premiados de vivienda multifamiliar.

	Del interés sustentable al	Tipo	Categoría
_	regenerativo: consideraciones a partir de	Bio-climático	
Tema	proyectos premiados de vivienda multifamiliar	Año	POSGRADO
		2024	
	A través de un análisis	comparativo entre	teoría y práctica, se
	destaca que las estrategias p	pasivas de diseño	para reducción del
	consumo energético, como ve	entilación cruzada,	protección solar y
Descripción	uso de colores adecuados, están más consolidadas en la práctica		
·	actual que las estrategias regenerativas que buscan la sustitución de		
	energías fósiles y el secuestro de gases de efecto invernadero		
	(Andrade-Serrano, et al., 2024).		
Fortalezas	Capacidad de integración, conservación de ecosistemas y la gestión sostenible de recursos naturales; énfasis en la cohesión social y la participación ciudadana.		
Debilidades	Alta dependencia de recursos económicos y capacidades institucionales; complejidad en la integración de múltiples actores y disciplinas.		
Aplicaciones al proyecto	Viviendas emergentes modu espacios verdes y sistemas pa		
Palabras claves	Ecourbanismo, conservación,	planificación urban	a

Tabla 27: Propuesta de reutilización de plástico de desecho en un sistema constructivo para división de interiores basado en paneles de PVC.

	Propuesta de reutilización de	Tipo	Categoría
Tema	plástico de desecho en un sistema constructivo para división de interiores basado en paneles de PVC	Tecnológico- constructivo Año 2022	POSGRADO
	Utiliza paneles modula	res fabricados cor	plástico reciclado,
	para división de interiores	en construcciones	s, los paneles se
	elaboran mediante procesos	de triturado, fundio	ión y moldeado de
Descripción	residuos plásticos poscons	sumo e industr	iales, alcanzando
·	dimensiones estándar de 1.20	m x 2.40 m x 10 c	m; muestran carga
	máxima a compresión de 12 MPa y flexión de 8 MPa, adecuados		
	para uso no estructural en divisiones interiores (Rodríguez		
	Hernández, et al., 2022).		
Fortalezas	Resistencia a humedad y plagas; permite respuesta rápida post- desastre.		
Debilidades	Limitada resistencia al fuego; dependencia de cadenas de reciclaje locales		
Anlingsionss	Uso de paneles de 10 cm d	-	-
Aplicaciones al proyecto	división de los espacios; doble piel exterior con cámara de aire de 15 cm para menor ganancia térmica		arnara de aire de 15
Palabras claves	Paneles de PVC reciclado, construcción modular, economía circular		

Tabla 28: Aplicación de escenarios en la evaluación de un estudio de caso, por medio de materiales y componentes constructivos sostenibles.

	Aplicación de escenarios en la evaluación de un estudio	Tipo	Categoría
Tema	de caso, por medio de materiales y componentes constructivos sostenibles	Tecnológico- constructivo Año 2021	POSGRADO
	El estudio analiza	la aplicación de	e la metodología
	de planeación por escenarios	para una evaluació	n de estrategias de
	construcción sostenible en ur	a casa de habitac	ión en Costa Rica,
Descripción	con proyecciones a 30 años, e	n las que incluyen v	variables climáticas,
·	mega tendencias globales, materiales sostenibles, simulación		
	térmica, este modelo propuesto reduce la huella de carbono y		
	consigue el ahorro energético mediante ventilación cruzada y		
	aislamiento térmico (Naranjo A	Abarca, 2021).	
Fortalezas	Metodología de escenarios adaptable a incertidumbre climática; Integración de perspectivas de expertos de varias disciplinas; validación con software de simulación térmica.		
Debilidades	Dependencia de datos climáticos locales precisos; complejidad del modelo para equipos sin capacitación; costos iniciales elevados de materiales especializados.		
Aplicaciones al proyecto	Uso de bambú estructural en módulos emergentes; simulación térmica de módulos con concreto reciclado.		

Tabla 29: El sistema tendinoso y la evolución de su tecnología constructiva: una revisión.

	El sistema tendinoso y la	Tipo	Categoría
	evolución de su tecnología constructiva: una revisión	Tecnológico- constructivo	
Tema		Año	Posgrado
		2024	
	El sistema tendinoso	es una tecnolog	ía constructiva no
	tradicional desarrollada princip	almente en Colomi	bia, que consiste en
	un sistema de cerramiento sis	mo-resistente com	puesto por paneles
Descripción	elaborados con cemento, sa	acos de fique y	alambre de púas,
2 dddinpolari	conformando un entramado	estructural ligero	y altamente dúctil
	(Magaña Herrera & Ramírez Vargas, 2024).		
	El sistema se basa en	la construcción de	paneles modulares
	que se ensamblan in situ, con un confinamiento estructural que actúa		
	como soporte principal junto con vigas y otros elementos, formando		
	una estructura ligera y resistente, la modulación estricta de los		
	paneles permite múltiples puntos de apoyo, reduciendo el volumen y		
	la cantidad total de estructura necesaria (Magaña Herrera & Ramírez		
	Vargas, 2024).		
Contologo	Destaca por su alta resistend	•	
Fortalezas	paneles ligeros y confinados p	ermite un montaje	rapido y seguro.
	Dependencia de mano de ob	ra ospocializada:	al eistama raquiara
Debilidades	una base adecuada para gara	•	•
	Sistema tendinoso en el dise		_
Aplicaciones al proyecto	aporta una solución estructural resistente a sismos; utilización de materiales locales contribuye a la sostenibilidad económica y ambiental del proyecto.		
. ,			
Palabras claves	Sistema tendinoso, tecnología	constructiva, resis	tencia sísmica
	vides v Maridueña (2025)		

Tabla 30: Propuesta de una arquitectura de referencia académica para la enseñanza de DevOps.

	Propuesta de una arquitectura de referencia	Tipo	Categoría
	arquitectura de referencia académica para la	Tecnológico-	
Tema	enseñanza de DevOps	constructivo Año	Posgrado
		2023	
	Propone una arquitect	ura de referencia	académica para la
	enseñanza del paradigma DevOps en el ámbito de la ingeniería de		
	software, DevOps es una cultu	ra y conjunto de pra	ácticas que integran
Descripción	equipos de desarrollo y ope	eraciones que me	joran la calidad y
,	velocidad en la entrega de	software median	te la colaboración
	continua y automatización (Mo	orales Martinez, 202	23).
	Incluye la configurac	ión e integración	de herramientas
	DevOps, diseño y documentación de flujos de información,		
	automatización de procesos y validación mediante entrevistas con		
	expertos, el proyecto busca cerrar la brecha educativa detectada que		
	muchos programas académicos carecen de estrategias claras para		
	enseñar DevOps, y donde la ausencia de una arquitectura de		
	referencia dificulta la adopción efectiva del paradigma (Morales		
	Martinez, 2023).		
Fortalezas	Ofrece un marco conceptual claro y estructurado que permite a estudiantes la comprensión y aplicación DevOps más allá del uso de herramientas.		
Debilidades	Requiere que los docentes y estudiantes tengan un nivel técnico previo suficiente para aprovechar plenamente la arquitectura.		
Aplicaciones al proyecto	Beneficiarse de un diseño modular donde cada módulo habitacional funcione como una unidad autónoma; incluye automatización de procesos para garantizar calidad y rapidez.		
Palabras claves	Arquitectura de referencia, ens software	señanza DevOps, i	ngeniería de

Tabla 31: Diseño arquitectónico de una vivienda unifamiliar con un sistema constructivo Walltech.

	Diseño arquitectónico de una	Tipo	Categoría		
	vivienda unifamiliar con un sistema constructivo	Tecnológico- constructivo			
Tema	Walltech	Año	Pregrado(ULVR)		
		2022			
	Es un método innova	ı dor basado en pa	neles estructurales		
	modulares que combinan ac	ero y cemento pa	ara la construcción		
	rápida, segura y eficiente de viviendas unifamiliares, cada panel está				
Descripción	compuesto por un esqueleto de varillas de acero de hasta cuatro				
·	milímetros de grosor, refe	orzado con ur	na malla metálica		
	electrosoldada que sirve de se	oporte para la aplic	cación de mortero y		
	cemento, generando una estru	emento, generando una estructura monolítica y autoportante (Arias			
	Monyota, 2022).				
	Los paneles son fabricados industrialmente con dimensiones				
	adaptables a cada proyecto, incluyendo aberturas para puertas,				
	ventanas y techos, lo que permite un diseño flexible y personalizado,				
	este proceso constructivo inicia con la nivelación y compactación del				
	terreno, seguido de la instalación de la cimentación y contrapiso				
	donde se fijan los paneles con conectores de acero (Arias Monyota,				
	2022).				
Fortalezas	El sistema Walltech destaca por su rapidez de construcción; Su estructura modular y prefabricada facilita el transporte y montaje en terrenos con acceso limitado, optimizando la logística.				
Debilidades	Necesidad de la infraestructura industrial para la fabricación de paneles; la aplicación de mortero y concreto requiere condiciones climáticas adecuadas para garantizar la calidad del curado.				
Aplicaciones al proyecto El sistema Walltech puede aplicarse eficazmente en el diseño a su rapidez de montaje y alta resistencia estructural; la mod de los paneles facilita la fabricación y transporte.					
				E1 1	vidos v Mariduoña (2025)

Tabla 32: Diseño participativo de un espacio público en el casco histórico de Sevilla.

	Diseño participativo de un	Tipo	Categoría	
	espacio público en el casco histórico de Sevilla	Socio		
Tema		comunitario Año	Posgrado	
		2022	Ü	
	El trabajo documenta	_	liseño narticinativo	
	impulsado por un grupo mot	·		
	equipo de investigación acci			
		• •		
Descripción	Sevilla, enfocado en la creaci	·		
	solar del casco histórico norte	de Sevilla (Palero	& de Manuel Jerez,	
	2022).			
	Se implementó una dinámica lúdica de diseño participativo			
	para la presentación de propuestas tanto a la administración			
	municipal como a los residentes, logrando una gestión colaborativa y			
	un proceso que va más allá de la mera consulta, fomentando la			
	apropiación social del espacio público (Palero & de Manuel Jerez,			
	2022).			
Fortalezas	El proceso fomenta la apropiación social y el compromiso vecinal; la integración de técnicos, investigadores y vecinos genera soluciones contextualizadas y adaptadas a las necesidades reales del barrio.			
Debilidades	El éxito del proceso participativo depende en gran medida del compromiso; la participación amplia puede generar procesos más largos y complejos.			
Aplicaciones al proyecto	Incorporación de procesos participativos desde el diseño hasta la implementación del prototipo modular.			
Palabras claves	Diseño participativo, espacio público, producción social del hábitat.			

Tabla 33: Más allá (y más acá) de un patio. Las concepciones múltiples de la arquitectura doméstica, emergentes de un diseño participativo (Rinconada, provincia de Jujuy).

	Más allá (y más acá) de un patio. Las concepciones	Tipo	Categoría	
Tema	múltiples de la arquitectura doméstica, emergentes de un diseño participativo (Rinconada, provincia de	Socio comunitario Año 2023	Artículo	
	Ĵujuy)		ífico y coloborativo	
	El proyecto se basa en		-	
	integrando talleres participativ			
	conocimiento académico con	•		
	reconoce la arquitectura com	o un agente con in	ıfluencia en la vida	
Decembraión	social y cultural, atravesada por ritualidades y significados que se			
Descripción	expresan en la espacialidad y materialidad de la vivienda (Tomasi &			
	Barada, 2023).			
Fortalezas	Integración de saberes locales y académicos: El diseño participativo permite que las soluciones arquitectónicas respondan culturales y sociales de la comunidad			
Debilidades	La naturaleza dinámica y contextualizada del proceso complica la estandarización; depende de la implicación continua de la comunidad.			
Aplicaciones al proyecto	Incorporación de procesos participativos y etnográficos para la captación de las prácticas y necesidades locales; colaboración entre arquitectos, antropólogos y actores sociales para el proceso proyectual.			
Palabras claves	Diseño participativo, arquitectura doméstica, comunidades indígenas			

Tabla 34: Diseño urbano táctico como instrumento placemaking en la Av. Samuel Cisneros en el cantón Durán.

	Diseño urbano táctico como	Tipo	Categoría	
Tema	instrumento placemaking en la Av. Samuel Cisneros en el cantón Durán		Pregrado (ULVR)	
		2023		
	La investigación se cer	ntra en el diseño urba	ano táctico aplicado	
	a la Avenida Samuel Cisneros	s en el cantón Durár	n, con la mejora del	
	espacio público peatonal i	mediante estrategi	as de urbanismo	
	participativo y movilidad urban	a, el proyecto busca	a la reactivación del	
	espacio público, fomenta la cohesión social a través de intervenciones			
Descripción	temporales y de bajo costo que respondan a las necesidades reales			
	de la comunidad (Villacís Acosta, 2023).			
Fortalezas	Involucra a los residentes en la toma de decisiones; el urbanismo táctico permite cambios visibles y efectivos sin grandes inversiones.			
Debilidades	Al ser tácticas y en muchos casos temporales, pueden requerir mantenimiento constante; el éxito depende de la implicación sostenida de la comunidad y autoridades.			
Aplicaciones al proyecto	Diseño de áreas sociales y recreativas flexibles que puedan integrarse o adaptarse; principios de urbanismo táctico para una mejora temporalmente el entorno inmediato de las viviendas emergentes.			
Palabras claves	Diseño urbano táctico, placemaking, participación comunitaria			

Tabla 35: Arquitectura progresiva para el diseño de viviendas comunitarias enfocada en tipologías de estilo americano.

	Arquitectura progresiva para	Tipo	Categoría			
Tema	el diseño de viviendas comunitarias enfocada en tipologías de estilo americano	Socio comunitario Año 2022	Pregrado (ULVR)			
	La arquitectura progresiva, también conocida como vivienda					
	incremental, es un modelo de	diseño y construcció	on que permite a las			
	familias completar y ampliar s	sus viviendas segúr	n sus necesidades,			
	recursos y gustos, en lugar de	una vivienda comple	etamente terminada			
D	desde el inicio (Cruz León, 20	22).				
Descripción	El modelo se basa en tres principios fundamentales: entrega					
	de una vivienda básica en condiciones habitables pero incompleta, la					
	participación de los beneficiarios en el diseño y construcción, y					
	facilitación de la ampliación progresiva conforme cambian las					
	necesidades familiares para el hogar (Cruz León, 2022).					
Fortalezas	Permite que las viviendas crezcan y se adapten a las necesidades cambiantes de las familias; fomenta la autoconstrucción y la apropiación del espacio.					
Debilidades	diseñada y anticipada para evitar problemas estructurales Integración de módulos habitacionales que permitan ampliaciones progresivas según las necesidades y posibilidades de las familias					
Aplicaciones al proyecto						
Palabras claves	Arquitectura, diseño, vivienda					

Tabla 36: El diseño participativo desde la perspectiva del diseño.

	El diseño participativo desde	Tipo	Categoría	
	la perspectiva del diseño	Sociocomunitario		
Tema		Año	Artículo	
		2023		
	Analiza cómo la incorp	ooración de dinámic	as participativas en	
	el proceso de diseño transform	na las prácticas, crite	erios e instrumentos	
	dentro de la actividad proye	ectual. En lugar de	e centralización de	
	decisiones en un grupo redu	ucido, el diseño pa	articipativo propone	
December 16	coordinación de la toma de	decisiones que inv	olucra a múltiples	
Descripción	actores con diferentes capacidades y responsabilidades, incluyendo			
	técnicos, usuarios, autoridades y constructores (Palero, 2023).			
	El trabajo destaca la necesidad de herramientas proyectuales			
	para las ventajas del diseño	participativo, enten	diendo el ambiente	
	construido como un fenómeno complejo y dinámico que requiere			
	integrar saberes diversos y contextuales, además, subraya el			
	componente político del diseño participativo como herramienta para			
	consensos desde abajo y anticipar posibles conflictos sociales en la			
	transformación del espacio (Palero, 2023).			
Fortalezas	Permite que las viviendas crezcan y se adapten a las necesidades cambiantes de las familias; fomenta la autoconstrucción y la apropiación del espacio.			
Debilidades	El éxito del modelo depende de que las familias tengan los medios, conocimientos y tiempo; la capacidad de incremento debe ser diseñada y anticipada para evitar problemas estructurales			
Aplicaciones al proyecto	Integración de módulos habitacionales que permitan ampliaciones progresivas según las necesidades y posibilidades de las familias afectadas por desastres.			
Palabras claves	Arquitectura, diseño, vivienda			

2.3 Análisis de Casos Análogos

2.3.1 Mapeo de Proyectos

Ilustración 12: Mapeo de proyectos.

Fuente: Archdaily (2025). Elaborado por: Benavides y Maridueña (2025).

2.3.2 Análisis de Casos Individuales

Ilustración 13: Refugio temporal diseñado por Shiheru Ban.

1

REFUGIO TEMPORAL DISEÑADO POR SHIGERU BAN

DATOS RELEVANTES

Autor: Arquitecto Shigeru Ban. **Medidas:** 2x2 metros.

Año: 2016

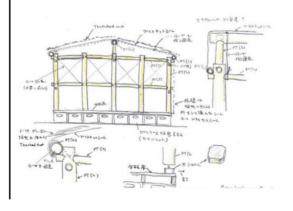
Ubicación: Quito, Ecuador.

Descripción:

El ganador del premio Pritzker y conocido como el arquitecto de los terremotos por varios diseños de casas temporales. El primer prototipo de refugio temporal se realizo en la ciudad de Quito, realizando un sampleo del proyecto el "Paper Loghouse" de Filipinas ya que tienen condiciones climáticas muy similares.

Tubos de papel

Tiras de madera y gabetas.

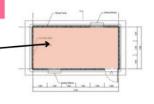


SECCIONES Y FACHADAS

ANÁLISIS ESTRUCTURAL

Sus paredes tienen una estructura sólida y con un marco estructural de un tubo de papel (Mundo constructor, 2020).

DETALLES CONSTRUCTIVOS



Fuente: ArchDaily (2025).


Elaborado por: Benavides y Maridueña (2025).

DISTRIBUCIÓN DE ESPACIOS

El área es privada ya que solo tiene un espacio.

ADAPTACIÓN AL ENTORNO

El entorno es calido, donde el refugio se adapta al entorno.

HÁBITAT FLOTANTE PRODUCTIVO DEL PESCADOR

DATOS RELEVANTES

Autor: Arquitectos Juan Carlos Bamba y Natura futura arquitectura

Medidas: 6x6 metros.

Año: 2020

Ubicación: Babahoyo, Ecuador.

Descripción:

Este prototipo consta con elementos flotantes por las fuertas inundaciones que hay en Babahoyo, cuenta con techo a dos agua y un cerramiento improvisado de plasticos y tiras de caña con prtas que funcionana como ventanas.

MATERIALES

Caña picada

Panel solar fotovoltaico

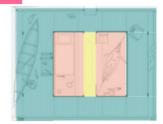
Madera de balsa

Cubierta de Zinc

SECCIÓN Y PLANTA ARQUITECTÓNICA

ANÁLISIS ESTRUCTURAL

DETALLES CONSTRUCTIVOS


CUBIERTA DE ZRIG PANEL BOLAR FOTOVOLTAICO PLANCHA DE CAÑA PICADA CERCHA DE MADERA ESTRUCTURAL Y ALMACENALE ENVOLVENTE DE MADERA PLATA/ORMA REMBILITADA EXISTENTE DE MADERA EXISTENTE DE MADERA ENCOLVENTE DE MADERA BOYAS BOYAS BOYAS

Fuente: ArchDaily (2025).

Elaborado por: Benavides y Maridueña (2025).

DISTRIBUCIÓN DE ESPACIOS

- Zona Privada
- Circulación
- · Zona pública

ADAPTACIÓN AL ENTORNO

El entorno es calido, pero las imundciones son el conflicto de la ciudad poe el prototipo se adapta a las necesidades.

REFUGIO DE EMERGENCIA CON ECOMATERIALES

DATOS RELEVANTES

Autor: Arquitectos Enrique Mora, Jorge Ludeña, Juan Carlos Bamba y Laboratorios de viviendas de interes social.

Área: 15 m2. Año: 2024

Ubicación: Guayaquil, Ecuador.

Descripción:

La idea principal del proyecto es generar una respuesta humanitaria a través de una solución de refugio o albergue que constituya la semilla de una vivienda incremental. En este sentido, se pretende superar el planteamiento de la mayoría de los refugios que son temporales dando solo respuesta a la situación de emergencia, por un concepto de refugio que es ya la semilla de una vivienda futura que irá creciendo y consolidándose en el tiempo. Esto se logra mediante un sistema modular que permite el crecimiento progresivo de la vivienda y la adaptación de los espacios interiores a las diferentes necesidades que van surgiendo con las transformaciones de los modos de habitar de las familias.

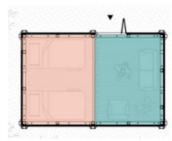
MATERIALES

 Paneles de madera

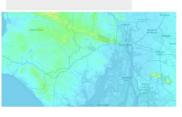
 Pilotes de hormigón

SECCIONES

ANÁLISIS ESTRUCTURAL


Se incorpora el bambú en paneles de cerramiento y en la estructura como símbolo de identidad local que aporta versatilidad, resistencia y un bajo impacto ambiental; por otro, el uso de fibras de desechos agroindustriales para la fabricación de paneles con un enfoque de economía circular que, en última instancia, permitiría a las familias cultivar la materia con las que se van a construir las siguientes fases de su vivienda.

DETALLES CONSTRUCTIVOS


Tubo esctructural Pilotes elevados piso

DISTRIBUCIÓN DE ESPACIOS

- Zona Privada
- Circulación
- Zona pública

ADAPTACIÓN AL ENTORNO

Guayaquil es un entorno con una temperatura muy alta pero al mismo tiempo cuando hay cambio de estación las inundaciones suelen ser muy fuertes, por eso la vivienda se adapta a las ncesidades del enorno cuando hace calor tienen ventilacion cruzada y al momento de inundaciones cuenta con pilotes elevados.

Fuente: ArchDaily (2025).

VIVIENDA DE EMERGENCIA

DATOS RELEVANTES

Autores: universidad Finis Terrea, Diego Bailon, Sebastian Silva,

Medidas: 3x9 m a 3 m de altura.

Año: 2010

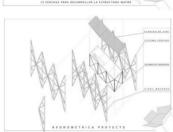
Ubicación: Valparaiso, Chile.

Descripción:

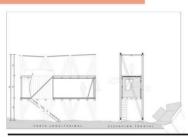
Este prototipo fue creado por el terremoto del 27 de febrero en Chile. La vivienda debe tener potencial de ampliación, ya que, aunque en primera instancia lo primordial es techo y refugio, la próxima será el crecimiento de este en busca del estándar habitacional conseguido por la familia antes de la catástrofe.

MATERIALES

Madera



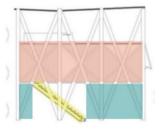
• Hormigón


ANÁLISIS ESTRUCTURAL

El sistema de cerchas verticales llegará a suelo empotrado por pollos de hormigón, amarrados a la madera a partir de una pletina tipo sándwich. El resto de sistema de cerchas verticales cerrara sus encuentros con pletinas circulares que aportaran una mejor colaboración estructural entre cerchas, de manera que los arriostramientos sean efectivos.

SECCIONES Y FACHADAS

DETALLES CONSTRUCTIVOS


Pletina tipo sándwich Cerchas de madera Cerchas de madera

Fuente: ArchDaily (2025).

Elaborado por: Benavides y Maridueña (2025).

DISTRIBUCIÓN DE ESPACIOS

- Zona Privada
- Circulación
- Zona pública

ADAPTACIÓN AL ENTORNO

Valparaíso se sitúa en un entorno natural caracterizado por su topografía accidentada y su clima mediterráneo costero. La ciudad se encuentra en un anfiteatro natural formado por la bahía homónima y rodeada de cerros, donde vive la mayor parte de la población. Su clima es templado pero el prototipo se adapta a las necesidades de la poblacion por ejemplos, lluvios o inundaciones.

PROTOTIPO DE VIVIENDA RURAL EN APAN/DVCH DE VILLAR CHACON ARQUITECTURA

DATOS RELEVANTES

Autores: José De Villar Martínez, Carlos Chacón Pérez.

Área: 38 m2

Año: 2019

Ubicación: Apan, Mexico

Descripción:

El prototipo es un hábitat movil, por ello la propesta se basa en un sistema de andamios para la estructura de la casa y el cerramiento, El andamio es el elemento más rentable y común en la construcción, ya que permite su crecimiento modular en todas las direcciones, incluso en altura, ajustándose a las necesidades del programa de vivienda. Una vivienda que puede crecer, pero también reducirse. Cualquier cambio en la distribución de los espacios podría realizarse fácilmente aprovechando un espacio existente o generando una nueva expansión y configuración.

MATERIALES

- Policarbonato
- Andamios
- Madera



FACHADAS

ANÁLISIS ESTRUCTURAL

La estructura básica combina cuatro módulos de 3x3 metros. El suelo, la cubierta y las fachadas se construyen con plataformas de andamio prefabricadas. Para generar espacios cerrados, se toma la estructura de andamio como marco, añadiendo sobre ella diferentes membranas ligeras de paneles celulares de policarbonato translúcido que proporcionan protección y aislamiento.

DETALLES CONSTRUCTIVOS

Fuente: ArchDaily (2025).

Elaborado por: Benavides y Maridueña (2025).

DISTRIBUCIÓN DE ESPACIOS

Zona Privada

Zona pública

ADAPTACIÓN AL ENTORNO

La temperatura varia mucho, hay dias que suele tener una baja temperatura y otros una alta temperatura, el prototipo se adapta las altas temperaturas por las averturas de los andamios conectando directamente con una ventilacion cruzada.

CMAX SYSTEMS

DATOS RELEVANTES

Autor: Arquitecto Nicolas García Mayor. .

Medidas: Desplegada 5.8 m de largo, 2.25 m de acho y 2,2 m de altura.

Año: 2001

Ubicación: Washinthon D.C, Estados Unidos.

Descripción:

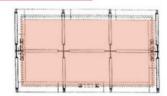
La idea era hacer la típica tienda de acampar con mayor o menor tamaño, con la finalidad de ayudar a las personas que están pasando momentos de emergencia con una capacidad máxima de 10 de personas. Se puede armar con 2 personas y solo necesita 11 minutos para estar lista, debajo de la carpa hay patas telescópicas que ayudan al refugio a mantener la estabilidad adaptándose a todo tipo de suelo irregular (Ortiz Delgado, 2014).

MATERIALES

Poliéster

FACHADAS

ANÁLISIS ESTRUCTURAL


El prototipo es la típica carpa de acampar con una lona y una estructura de aluminio, se convierte es un espacio amplio cuando se puede acoplar a módulos similares.

DETALLES CONSTRUCTIVOS

DISTRIBUCIÓN DE ESPACIOS

Zona Privada

ADAPTACIÓN AL ENTORNO

 Washington, DC cuenta con numerosos espacios verdes, pero el prototipo se adapta a diferentes espacios por sus patas adaptables.

Fuente: ArchDaily (2025).

ÁBATON CASA TRANPORTE ÁPH80/ÁBATON ARQUITECTURA

DATOS RELEVANTES

Autores: Ábaton arquitecrura Área: 27 m2 Año: 2013 Ubicación: España, Europa.

Descripción:

ABATON ha desarrollado la serie ÁPH80 como una vivienda ideal para 2 personas, transportable por carretera, que se puede instalar casi en cualquier sitio. Se trata de una vivienda sencilla y robusta, en la que los materiales y acabados aportan sensación de equilibrio y bienestar. Construida en madera y transportable en un camión estándar, la ÁPH80 se inspira en los principios de ÁBATON: bienestar, equilibrio medioambiental y sencillez. La ÁPH80 consta de tres espacios diferenciados: estar/cocina -con vitrocerámica o gas, nevera, fregadero y campana extractora-baño completo con ducha y dormitorio, en una superficie de 27m2 (9x3), con techo a dos aguas de 3.5m de altura en su punto más alto que proporciona una sensación de amplitud y confort basada en las líneas sencillas.

MATERIALES

Madera macizas
 Paneles de madera de
 Cemento
 abeto

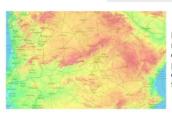
ANÁLISIS ESTRUCTURAL

Exterior revestido de aglomerado de virutas de madera con cemento en color gris; fachada ventilada con aislante térmico de 10cm en toda la envolvente. La estructura es de madera maciza, fabricada mediante control numérico y el interior se compone de paneles de madera de abeto español tintados en blanco.

FACHADA

DETALLES CONSTRUCTIVOS

Fuente: ArchDaily (2025).


Elaborado por: Benavides y Maridueña (2025).

DISTRIBUCIÓN DE ESPACIOS

- Zona Privada
- Zona pública
- Zona semipublica

ADAPTACIÓN AL ENTORNO

El clima en España es templado mediterráneo, con veranos calurosos e inventos fríos, el prototipo se adapta a las estaciones calurosas por tener fachadas ventialdas.

CONCRETE CANVAS SHELTER

DATOS RELEVANTES

Autores: Ingenieros Willian Crawford y Peter Breewin. **Medidias:** 25 a 50 metros.

Año: 2004

Ubicación: Reuno Unido, Europa.

Descripción:

El componente principal es la lona por el resalte que tiene en cada una de sus fachadas, básicamente solo se necesita añadir aire y agua para proporcionar entre 25 o 50 metros dependiendo del módulo ya que se puede acoplar a otros módulos añadiendo más espacio.

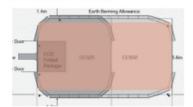
MATERIALES

FACHADAS

ANÁLISIS ESTRUCTURAL

Su estructura se compone de una tela de hormigón prefabricado con un interior de plástico inflable, anclada por puertas de acero en cada extremo, ofrece una estructura permanente, a prueba de fuego y estéril en su interior.

DETALLES CONSTRUCTIVOS



Fuente: ArchDaily (2025).

Elaborado por: Benavides y Maridueña (2025).

DISTRIBUCIÓN DE ESPACIOS

· Zona Privada

ADAPTACIÓN AL ENTORNO

El clima en Reino Unido es templado por inviernos frios y humedos, veranos frescos y humedos, y precipitaciones abundantes en todo el año, el protitpo por su capa de prefabricada de hormigón y lona se adapta a todas las adapataciones.

ESCUELA FLOTANTE EN MAKAKO

DATOS RELEVANTES

Autor: Estudio ngeriano NLÉ Architects **Medidas:** tiene 100 m2 y 10 metros de alto.

Año: 2013

Ubicación: Makako, Nigeria.

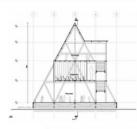
Descripción:

Este prototipo es una escuela flotante cuya estructura se adapta a cualquier cambio climático en la zona africana. Es un edificio tipo embarcación flotante adaptándose a inundaciones con mareas muy altas o pequeñas todo depende del nivel del agua donde se encuentre, su finalidad es crear una comunidad con diferentes embarcaciones flotantes donde una se pueda unir con la otra (Muños Mínguez, 2015).

MATERIALES

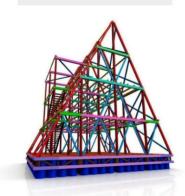
Bambú

Barriles azules



Madera

Materiales reciclados



SECCIÓN

ANÁLISIS ESTRUCTURAL

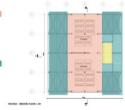
Construcción de base rectangular, con instalaciones de sistemas fotovoltaicas.

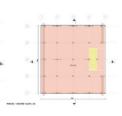
Tiene una estructura que se adapta a todo un cambio climático.

DETALLES CONSTRUCTIVOS

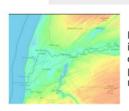
Tienen una ventilación cruzada.

Su estructura esta echa por tiras de madera y


El piso esta conformado por una estructura de madera y barriles.


Fuente: ArchDaily (2025).

Elaborado por: Benavides y Maridueña (2025).


DISTRIBUCIÓN DE ESPACIOS

- Zona Privada
- Circulación
- Zona pública

ADAPTACIÓN AL ENTORNO

El entorno es seco, pero las imundciones son el conflicto de la ciudad pero el prototipo se adapta a las necesidades.

PAPER LOG HOUSE

DATOS RELEVANTES

Autor: Arquitecto Shingeru Ban. **Medidas:** 4,1 x 4,1 x 3,6 metros **Año:** 1995

Ubicación: Haití, Africa.

Descripción:

El prototipo tiene una forma cuadrada, construida principalmente con tubos de cartón reciclado formando una estructura portante con resistencia sísmica y elementos estructurales como la madera y el aluminio. Además, tienes la opción de cubrir la vivienda con poliuretano ayudando a conseguir una solidez al momento de que llueva y no se filtre el agua.

MATERIALES

Gabetas

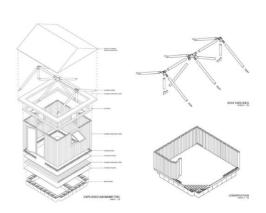
Tubos de cartón

· Paneles de madera

• Materiales reciclados

FACHADAS

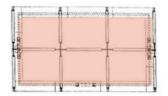
ANÁLISIS ESTRUCTURAL



Su cimentación esta hecha por cajas de cerveza y sacos de arena con tubos de cartón en forma horizontal al largo del suelo, gracias a los tubos las paredes funcionan como aislantes térmicos y su cubierta esta echo de materiales textiles o membranas plásticas (Muños Mínguez, 2015).

DETALLES CONSTRUCTIVOS

DISTRIBUCIÓN DE ESPACIOS


Zona Privada

Tener gabetas, rellenar las cajas, colocar capas de paneles de cajas de cervezas, disponer de tubos, aislar el cerramiento con esponjas, formar una U en el cerramiento, cubierta con materiales textiles.

Fuente: ArchDaily (2025).

Elaborado por: Benavides y Maridueña (2025).

ADAPTACIÓN AL ENTORNO

Su topografia es montaños, su clima es tropical y su vulnerbilidad a desastres naturales.

CONTAINER TEMPORARY HOUSING

DATOS RELEVANTES

Autor: Arquitecto Shingeru Ban.

Área: 29.7 m2 **Año**: 2011

Ubicación: Onowa, Japón.

Descripción:

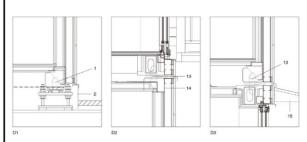
Son viviendas temporales de tres plantas construido con contenedores de transporte. Al apilar estos contenedores en un patrón de tablero de ajedrez, crea espacios habitables amplios y luminosos entre ellos.

MATERIALES

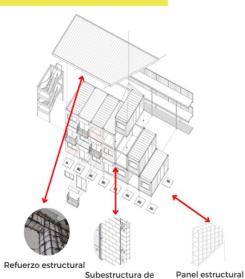
Techo textil

• Contenedores

Madera


• Tubos de papel

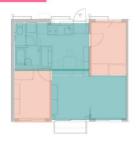
SECCIONES



ANÁLISIS ESTRUCTURAL

Tiene una estructura solida y fácil de montar, construa principalmente con contenedores y tubos de papel con una estructura portante y elementos estructurales como la madera.

DETALLES CONSTRUCTIVOS



Fuente: ArchDaily (2025).

Elaborado por: Benavides y Maridueña (2025).

DISTRIBUCIÓN DE ESPACIOS

- Zona Privada
- Circulación
- Zona pública

ADAPTACIÓN AL ENTORNO

Onowa tiene un clima húmedo de monzón, este bloque tiene una respuesta mucho más inmediata a la hora de emergencias, se puede desmontar de forma fácil y los contenedores pueden ser reutilizados no deja un gran impacto ambiental.

LONGBAG SUPERADE

DATOS RELEVANTES

Autor: Arquitecto Nader Khaff. Áreas: 20 m2

Año: 1995

Ubicación: Tailandia, Asia

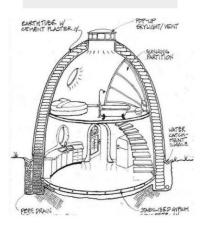
Descripción:

E por un alambre que sirve como sostén para que los sacos de arena tengan mucha mas resistencia, se puede hacer una estructura temporal y los sacos pueden ser naturales o sintéticos, la paredes formada por los sacos sirven como aislante térmico y ayuda a soportar inundaciones, además se pueden reducir o ampliar el espacio (Muños Mínguez, 2015).

MATERIALES

Saco de arena

 Alambre galvanizado

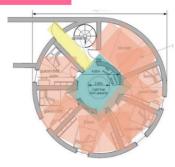


SECCIÓN

ANÁLISIS ESTRUCTURAL

Su estructura necesita hiladas de sacos de arena para formar un ovalo.

DETALLES CONSTRUCTIVOS



Fuente: ArchDaily (2025).

Elaborado por: Benavides y Maridueña (2025).

DISTRIBUCIÓN DE ESPACIOS

- · Zona Privada
- Circulación
- Zona pública

ADAPTACIÓN AL **ENTORNO**

Tailandia disfruta de un clima tropical influenciado por los vientos monzónicos estacionales, el proyecto es energéticamente sostenible ya que la luz solar entra con facilidad y cuenta con un aislamiento térmico eficiente ya que el sol y el viento provoca ese calentamiento o enfriamiento dentro del refugio.

REFUGIO DE EMERGENCIA/ NIC GONZALES + NIC MARTOO

DATOS RELEVANTES

Autores: Arquitectos Nic Gonzales y Nic Martoo.

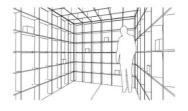
Área: 16 m2 **Año**: 2013

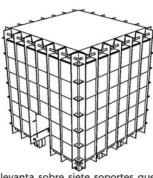
Ubicación: Australia, Oceanía

Descripción:

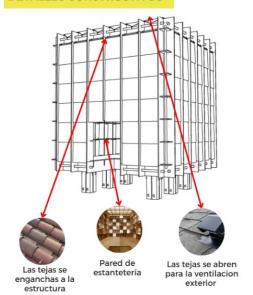
El diseño proporciona un espacio con capacidad para dos ocupantes y sus pertenencias, entregándoles la posibilidad de controlar las relaciones con el mundo exterior a través de una piel flexible de tejas sólidas, translúcidas y transparentes.

MATERIALES





SECCIÓN



ANÁLISIS ESTRUCTURAL

El refugio se levanta sobre siete soportes que se montan a través de un proceso similar. Esto crea una separación física entre el refugio y los escombros de una zona de desastre. El techo se compone de una membrana de plástico transparente para permitir el ingreso de luz natural. El refugio está cerrado con una piel de madera y tejas de plástico. Agujeros pre-perforados en los elementos horizontales permiten que las tejas se enganchan en la estructura.

DETALLES CONSTRUCTIVOS

Fuente: ArchDaily (2025).

Elaborado por: Benavides y Maridueña (2025).

DISTRIBUCIÓN DE ESPACIOS

ADAPTACIÓN AL ENTORNO

El clima tropical en Tailandia es generalmente caliente y húmedo en la mayor parte del país durante la mayor parte del año, el prototipo se adapta al entorno cálido con las tejas que se abren ayudando en el sisterma termico.

BIENESTER, CENTRO COMUNITARIO TEKNAF UPAZILA

DATOS RELEVANTES

Autor: Arquitecto Rizvi Hassan.

Área: 10764 m2 **Año:** 2019

Ubicación: Bangladesh, Oceanía

Descripción:

El centro ofrece a niñas y mujeres adolescentes un hogar seguro donde pueden darse una ducha a diario, un espacio para aislarse del abuso y la violencia, y donde pueden aprender a crear y compartir.

MATERIALES

FACHADA

ANÁLISIS ESTRUCTURAL

El exterior de la estructura está irregular y trata de camuflarse con el contexto. La textura, el color y el entorno están inspirados en los "Paner Boroj" (tonos de hojas de betel) que se ven a menudo en los campos de arroz. Por otro lado, el interior tiene los colores lo suficientemente vibrantes como para crear una esencia alegre.

DETALLES CONSTRUCTIVOS

Fuente: ArchDaily (2025).

Elaborado por: Benavides y Maridueña (2025).

DISTRIBUCIÓN DE ESPACIOS

- Zona Privada
- Circulación
- Zona pública

ADAPTACIÓN AL ENTORNO

El clima tropical generalmente caliente y húmedo, por eso el protitipo no cuenta con una estrtegia bioclimatico que ayude a reducir la temperatura.

2.2.3 Comparación y Resultados de Comparación de Criterios

2.2.3.1 Análisis de casos individuales.

El objetivo de este punto es analizar todos los proyectos análogos su forma, accesibilidad, fachadas etc., todos sus componentes arquitectónicos y a partir de ahí tener una referencia más amplia al momento de ejecutar la propuesta de la vivienda emergente.

Sistema de ponderación, con una escala del 1 al 4 se estudiarán los aspectos de cada proyecto:

- 1: No cumplen con los criterios establecidos
- 2: Cumple parcialmente
- 3: Cumple adecuadamente
- 4: Cumple de manera sobresaliente

Ámbitos de Evaluación:

- Forma: Estructura arquitectónica y relación con el entorno.
- Función: Distribución espacial y eficiencia.
- Concepto: Coherencia con la visión teórica y los objetivos del proyecto.
- Materiales: Sostenibilidad de los materiales empleado.

Conclusión:

Este punto se enfoca en asegurar que las propuestas contengan todos los estándares arquitectónicos, basándose en lo funcional y sostenible, adaptándose a cualquier entorno hostil que presente en las diferentes situaciones de emergencias y adaptándose al proyecto.

Tabla 37: Análisis de proyectos análogos.

	PROYECTOS Análogos	ILUSTRACIÓN	FORMA	FUNCIÓN	CONCEPTO	MATERIALES
LOCALES	Refugio temporal diseñado por Shigeru Ban		3	3	3	4
Гос	Hábitat flotante productivo del pescador		3	3	4	4
ERICANOS	Refugio de emergencia con materiales eco materiales		3	3	3	4
LATIONAMERICANOS	Vivienda de emergencia		2	3	3	3
SANOS	Prototipo de vivienda rural Apan		3	3	4	4
AMERICANOS	Cmax systems	1	3	4	4	3
EUROPEOS	Ábaton casa transporte Áph80		3	3	4	3

	Concrete canvas shelter	Dulley Intr	3	4	4	3
AFRICANOS	Escuela flotante en <u>Makako</u>		4	4	4	4
AFRIC	Paper log house		3	3	3	4
ASIÁTICOS	Container Temporary housing	A DOWN	2	3	2	2
ASIÁ	Longbag superade		3	3	2	3
OCEANÍA	Refugio de emergencia/ <u>Nic</u> Gonzales + <u>Nic</u> <u>Martoo</u>		2	3	3	3
OCE	Centro comunitario Teknaf Upazila		4	3	3	3

Tabla 38: Resultado de proyectos análogos.

	RESULTADO				
	NOMBRE	SUMATORIA			
1	Escuela flotante en Makako	16			
2	Hábitat flotante productivo del pescador	14			
3	Prototipo de vivienda rural Apan	14			
4	Cmax systems	14			
5	Concrete canvas shelter	14			
6	Refugio temporal diseñado por Shigeru Ban	13			
7	Refugio de emergencia con materiales eco	13			
	materiales				
8	Ábaton casa transporte Áph80	13			
9	Paper log house	13			
10	Centro comunitario Teknaf Upazila	13			
11	Vivienda de emergencia	11			
12	Longbag superade	11			
13	Refugio de emergencia/Nic Gonzales + Nic	11			
13	Martoo				
14	Container Temporary housing	9			

2.2.3.2 Comparación de criterios.

Refugio temporal diseñado por Shigeru Ban

• Formal

Tipo estructural: tiene una estructura sólida, con un marco estructural de tubo de papel.

Diseño exterior: las fachadas son recta, con una cubierta doble.

Distribución volumétrica: es un prototipo que tiene una estructura desarmable.

• Funcional

Organización interna: cuenta con una sola planta.

Accesibilidad: el prototipo cuenta con un solo accesos.

Conceptual

Sostenibilidad: cuenta con una ventilación natural, y su estructura es de materiales reciclados o naturales.

Relación usuario-diseño: busca que sea fácil de armar.

Materiales

Los materiales son fáciles de encontrar y manejar.

Hábitat flotante productivo del pescador

• Formal

Tipo estructural: cuenta con una estructura sólido de madera y una plataforma de boyas de madera.

Diseño exterior: las fachadas son recta, con una cubierta doble.

Distribución volumétrica: el prototipo tiene una forma cuadrangular.

Funcional

Organización interna: cuenta con un solo espacio.

Accesibilidad: el prototipo cuenta con dos accesos.

Conceptual

Sostenibilidad: cuenta con una ventilación natural, y su estructura son de materiales reciclados y naturales.

Relación usuario-diseño: el proyecto se adapta al entorno ya que es una vivienda flotable, con cerramiento improvisando de plástico.

Materiales

Algunos materiales son fáciles de encontrar, los demás muy costoso.

Refugio de emergencia con eco materiales

Formal

Tipo estructural: el bambú se incorpora en paneles de cerramiento que aporta versatilidad y resistencia.

Diseño exterior: las fachadas son rectas con un piso elevado por pilotes y una cubierta doble.

Distribución volumétrica: el prototipo tiene una forma rectangular.

Funcional

Organización interna: cuenta con un solo espacio.

Accesibilidad: el prototipo cuenta con un solo accesos.

Conceptual

Sostenibilidad: cuenta con una ventilación natural, y su estructura es de paneles de madera

Relación usuario-diseño: el proyecto visualmente es muy atractivo y adaptable a diferentes entornos gracias a sus pilotes.

Materiales

La mayoría de los materiales son fáciles de encontrar, pero son costosos.

Vivienda de emergencia

• Formal

Tipo estructural: cuenta con un sistema de cerchas verticales llega al suelo empotrado por pollos de hormigón, amarrados a la madera.

Diseño exterior: las fachadas son estructuras de madera en forma de X.

Distribución volumétrica: el prototipo tiene una forma rectangular.

Funcional

Organización interna: cuenta con dos espacios, planta baja y primera planta.

Accesibilidad: el prototipo cuenta con un acceso.

Conceptual

Sostenibilidad: cuenta con una ventilación natural.

Relación usuario-diseño: el proyecto se adapta al entorno, el diseño busca solventar las necesidades de las personas elevando los prototipos con pilotos de hormigón.

Materiales

Algunos materiales son fáciles de encontrar, los demás costosos.

Prototipo de vivienda rural en Apan/ Dvch de Villar Chacon arquitectura

Formal

Tipo estructural: la estructura combina cuatro módulos, el suelo, la cubierta, y las fachadas se construyen con plataformas y andamios prefabricados.

Diseño exterior: en las fachadas se nota los andamios prefabricados con paneles de madera y policarbonato.

Distribución volumétrica: el prototipo tiene una forma rectangular.

• Funcional

Organización interna: cuenta con dos espacios.

Accesibilidad: el prototipo cuenta con cuatro espacios, el cuarto y el baño son zonas privadas, el comedor y la sala son espacios públicos.

Conceptual

Sostenibilidad: se añade diferentes membranas ligeras de paneles celulares de policarbonato que proporciona protección y aislamiento.

Relación usuario-diseño: el proyecto se adapta al entorno, el diseño busca solventar las necesidades de las personas elevando los prototipos con pilotos de hormigón.

Materiales

La mayoría de los materiales son reciclados.

Cmax Systems

Formal

Tipo estructural: el prototipo es la típica carpa de acampar con una lona.

Diseño exterior: su diseño es modular, con una forma circular.

Distribución volumétrica: es un solo modulo que al momento de juntarse se crean varios módulos.

Funcional

Organización interna: es un espacio muy amplio que se puede acoplar a las deferentes necesidades de la persona.

Accesibilidad: la circulación depende de cómo se distribuya en la carpa, pero es muy limitado para actividades sociales.

Conceptual

Enfoque general: prioriza la privacidad, pero con poca ventilación he iluminación.

Sostenibilidad: no cuentas con espacios verdes, su ventilación y luz natural son nulas, se debería mejorar en ese aspecto.

Relación usuario-diseño: busca que sea flexible y fácil de armar.

• Materiales

Cuenta con paredes de lona, que facilita el agrandamiento del módulo.

Ábaton casa transporte Áph80/Ábaton arquitectura

• Formal

Tipo estructural: la estructura es de madera maciza, y el interior se compone de paneles de madera de abeto.

Diseño exterior: el prototipo está revestido de aglomerados de virutas de madera de color gris.

Distribución volumétrica: tiene una forma rectangular emulando una casa tradicional.

Funcional

Organización interna: es un solo modulo con diferentes espacios, como zona privada, zona publica y zona semiprivada.

Accesibilidad: cuenta con tres entradas y su circulación es aceptable.

Conceptual

Enfoque general: prioriza la privacidad, pero con poca ventilación he iluminación.

Sostenibilidad: su fachada es ventilada con u aislante térmico de 10cm en toda la envolvente.

Relación usuario-diseño: se adapta al entorno el suelo, su diseño es simple y fácil de trasladar.

Materiales

La gran parte de sus materiales son naturales.

Concrete canvas shelter

• Formal

Tipo estructural: su estructura se compone de tela de hormigón prefabricado con un interior de plástico inflable.

Diseño exterior: su diseño es modular, con una forma ovalada.

Distribución volumétrica: es un diseño muy flexible, con una forma ovalada.

Funcional

Distribución: su circulación es eficiente cuando se unen varios módulos, y cuenta con una sola zona.

Accesibilidad: cuenta con dos accesos.

Conceptual

Sostenibilidad: no cuenta con ninguna estrategia bioclimática, pero su lona es aprueba de fuego.

Relación usuario-diseño: es flexible y fácil de armar.

Materiales

Sus materiales son aprueba de fuego, con una estructura permanente.

Escuela flotante en Makako

Formal

Tipo estructural: este prototipo tiene una estructura de base rectangular, con instalaciones de sistemas voltaicas.

Diseño exterior: su diseño tiene forma de barco.

Distribución volumétrica: tiene una forma triangular, con varios niveles.

Funcional

Distribución: cuenta con dos plantas, y dos zonas: privada y pública.

Accesibilidad: no cuenta con rampas, además tiene dos aberturas por ambos lados.

Conceptual

Enfoque general: es un edificio tipo embarcación flotante, que se adapta a inundaciones o mareas altas, construida con materiales orgánicos.

Sostenibilidad: Este proyecto emplea fuentes de energía renovable, recupera materiales orgánicos para su reutilización y aprovecha el agua pluvial.

Relación usuario-diseño: es una estructura sólida que se adapta para dar clases u hospedarse.

Materiales

Sus materiales son reciclados y naturales.

Paper Log House

Formal

Tipo estructural: forma una estructura portante con resistencia sísmica.

Diseño exterior: las fachadas del prototipo cambian depende del lado, no es un cambio significativo.

Distribución volumétrica: el prototipo tiene una forma cuadrada, con una sola planta.

Funcional

Distribución: el prototipo cuenta con una zona privada.

Accesibilidad: no cuentas con rampas, y solo cuenta con una puerta de acceso o salida.

• Conceptual

Sostenibilidad: cuenta con ventilación natural.

Relación usuario-diseño: busca que sea flexible y fácil de armar.

• Materiales

Los materiales son reciclable y fácil de encontrar.

Container Temporary Housing

Formal

Tipo estructural: tiene una estructura sólida y fácil de montar construida principalmente por contenedores.

Diseño exterior: son fachadas planas con ventanas y puertas.

Funcional

Distribución: cuentas con dos zonas privadas y pública.

Accesibilidad: cuenta con rampas, además con una puerta de acceso o salida.

Conceptual

Sostenibilidad: Este bloque a comparación de los otros ejemplos tiene una respuesta mucho más inmediata a la hora de emergencias, se puede desmontar de forma fácil y los contenedores pueden ser reutilizados, no deja un impacto ambiental donde cumpla su función.

Relación usuario-diseño: busca que sea flexible y fácil de armar.

Materiales

Como el material se basa en contenedores es muy costoso.

Longbag Superade

Formal

Tipo estructural: su estructura necesita hiladas de sacos de arena para formar un ovalo.

Diseño exterior: su diseño es modular, con una forma ovalada.

Distribución volumétrica: la vivienda al momento de construirse queda como un objeto fijo, pero si se unen más hileras de sacos de arena pueden formar una casa más amplia.

Funcional

Distribución: consta de varios espacios y diferentes zonas privadas y públicas.

Accesibilidad: no cuentas con rampas, y cuenta con varias puertas de acceso o salida.

Conceptual

Sostenibilidad: El proyecto es energéticamente sostenible ya que la luz solar entra con facilidad y cuenta con un aislamiento térmico eficiente ya que el sol y el viento provoca ese calentamiento o enfriamiento dentro del refugio.

Relación usuario-diseño: su diseño es como un huevo, no se adapta a cualquier entorno.

• <u>Materiales</u>

La mayoría de los materiales son orgánicos y fácil de hallar.

Refugio de emergencia/Nic Gonzales+Nic Martoo

• Formal

Tipo estructural: el prototipo se levanta sobre siete soportes que se montan a través de un proceso similar.

Diseño exterior: las fachadas son recta con un piso elevado por pilotes, con una cubierta recta de un agua.

Distribución volumétrica: tiene una forma rectangular.

Funcional

Distribución: cuenta con una zona privada.

Accesibilidad: no cuentas con rampas, tiene como acceso una sola puerta.

Conceptual

Sostenibilidad: por medio de aberturas el prototipo cuenta con luz natural.

Relación usuario-diseño: es un módulo rectangular adaptable a diferentes entornos.

Materiales

Los materiales son fáciles de conseguir.

Centro comunitario Teknaf upaliza

• Formal

Tipo estructural: el exterior de la estructura es irregular y trata de camuflarse con el contexto.

Diseño exterior: las fachadas son recta con una cubierta ondulada.

Distribución volumétrica: tiene una forma ovalada.

Funcional

Distribución: cuenta con varios espacios, por lo amplio que es y de distribuyen en dos zonas privada y pública.

Accesibilidad: no cuentas con rampas, tiene como acceso una sola puerta.

Conceptual

Sostenibilidad: el prototipo cuenta con luz y ventilación natural.

Relación usuario-diseño: es un módulo rectangular adaptable a diferentes entornos.

Materiales

La gran mayoría de los materiales son naturales y fácil de conseguir.

2.4 Marco conceptual

2.4.1 Arquitectura Efímera

La modularidad permite la posibilidad que sus partes no sean completamente rígidas, quiere decir, que sus partes posean la característica de cambiar su forma, reemplazarla o que se altere a medida de las necesidades de las personas, este tipo de corriente arquitectónica, como su nombre lo dice, posibilita a que el uso y forma

de los espacios sean temporales, que se transformen o adapten acorde a las demandas de las personas (Vera Torres, 2019).

2.4.2 Arquitectura Modular

La arquitectura modular es un conjunto de sistemas en módulos independientes que permiten la conexión entre cada una de sus partes, conservando las mismas dimensiones y proporciones entre ellos mismos, la ventaja de este tipo de diseños radica en la posibilidad de que los elementos se modifiquen, reemplacen o agreguen sin que se altere la integridad del todo en el sistema (Vera Torres, 2019).

2.4.3 Arquitectura de emergencia

La arquitectura de emergencia es el concepto de la creación y diseño de espacios que proporcionan refugio temporal ante un desastre, desde otro punto de vista, es la conexión con nuestras necesidades más primordiales, al encontrarse en una situación de peligro y supervivencia (Muñoz Mínguez, 2015).

La arquitectura en contexto de emergencia desempeña un papel esencial en la mitigación de riesgos y la provisión de entornos habitables seguros. Esto implica una planificación adecuada del territorio, selección de materiales apropiados y desarrollo de sistemas constructivos eficientes que respondan a escenarios críticos y promuevan soluciones habitacionales adaptables (Muñoz Mínguez, 2015).

2.4.4 Cambio climático

El cambio climático representa una de las amenazas globales más relevantes, la subida de la temperatura a escala global ha provocado que, en diferentes partes del planeta, las precipitaciones se hayan alterado, afectando el equilibrio de los ecosistemas y la biodiversidad (Soria Noroña & Vásquez Vanegas, 2025).

Entre los efectos observables del cambio climático se encuentran el aumento del nivel del mar, la desglaciación, una mayor temperatura en los océanos, entre otros. Todo este tipo de cambios del clima ha afectado en la vida de millones de personas (Soria Noroña & Vásquez Vanegas, 2025).

2.4.5 Diseño Resiliente

El diseño resiliente empieza con la mira de un catastrófico escenario acerca de las condiciones climáticas como punto de partida, toma visión acerca estas posibilidades en el futuro para luego cubrir estas necesidades a partir del diseño, logrando un entorno con óptimas condiciones de confort con un gran margen de tiempo al cambio climático (Nieto Barbosa et al., 2021).

Una forma que se toma en cuenta es el diseño bioclimático, con un estudio al lugar en donde la comunidad se asienta, se busca la menor vulnerabilidad del cambio climático a los hogares, el confort térmico óptimo en diferentes escenarios, se recurre a dos metodologías, una dónde se trabaja con la teoría del confort adaptativo y otra sobre condiciones estáticas, aunque ambas son complementarias para un óptimo diseño (Nieto Barbosa, Cubillos Gonzalez, & Barrios Salcedo, 2021).

2.5 Marco Legal

2.5.1 Normativas arquitectónicas

Tabla 39: Especificaciones en obras menores.

Art. 15 Ordenanza general de edificaciones	Obras menores sin exigencia de registro	Las obras menores son construcciones de bajo impacto que no requieren registro formal, solo aviso de inicio de obra a la municipalidad. No pueden constituir una nueva unidad familiar ni superar ciertos límites de área (por ejemplo, 30 a 35 m² según el caso). Esto incluye estructuras auxiliares como pérgolas, toldos y cerramientos que pueden usarse temporalmente
---	--	---

Fuente: Alcaldía de General Villamil Playas (2025). Elaborado por: Benavides y Maridueña (2025).

Tabla 40: Campamentos temporales.

Art. 22, Reglamento para la Construcción γ Obras Públicas	Campamentos temporales	 Ubicación en terrenos bien drenados, alejados de zonas pantanosas. Dormitorios adecuados con un volumen mínimo de 9 m³ por trabajador. Pisos de cemento o madera elevados para facilitar limpieza. Ventana y puertas con mosquiteros Limpieza, fumigación y desinfección periódica. Servicios adecuados para aguas negras y desechos sólidos conforme normas sanitarias. Comunicación inmediata a autoridades sanitaria entre enfermedades contagiosa. Distancias mínimas entre áreas médicas, cocina y dormitorios para seguridad y salubridad.
--	------------------------	---

Tabla 41: Protección especial a personas con doble vulnerabilidad.

Normas Técnicas Ecuatorianas (NTE INEN) Protección Especial

Protección especial a persona con doble vulnerabilidad: Se garantiza el derecho espacial a todas las personas, prácticamente a aquellas con discapacidad, privadas de libertad, quienes adolezcan de enfermedades catastróficas o de alta complejidad, en situaciones de riesgo, víctimas de violencia doméstica y sexual, víctimas de desastres naturales o antropogénico por constituir de doble vulnerabilidad.

Fuente: Alcaldía de General Villamil Playas (2025). Elaborado por: Benavides y Maridueña (2025).

Tabla 42: Protección especial a personas con doble vulnerabilidad.

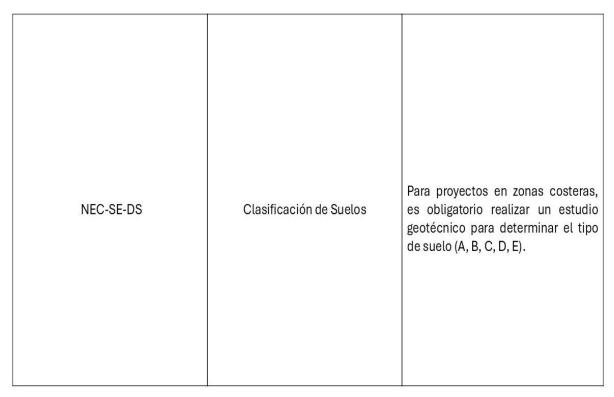
Requisitos El diseño de una rampa debe completar de circulación constituido por: -el ancho libre de paso. -altura libre de paso. Para el caso del uso de la rampa de personas con movilidad reducida debe tomarse en cuenta la áreas de maniobra. La longitud horizontal máxima de una rampa menor o igual al 8% de pendiente debe ser hasta 10000 mm y para rampas del 12% de pendiente ser hasta 3000 mm; al cumplir estas condiciones se debe incorporar descanso.

Fuente: Alcaldía de General Villamil Playas (2025). Elaborado por: Benavides y Maridueña (2025).

Tabla 43: Elementos desmontables.

Art. 39, Ordenanza General de Accesorios desmontables para Edificaciones protección temporal	Elementos desmontables como toldos o marquesinas que sirven para protección contra lluvia o sol no requieren registro, solo aviso de inicio de obra. Deben respetar alturas mínimas y límites de ocupación en vía pública, y en caso de ocupar espacio público, se debe solicitar permiso especial
---	--

Tabla 44: Obras preliminares.


Art. 40, Ordenanza General de Edificaciones	Obras preliminares y construcciones provisionales	Se consideran obras preliminares los trabajos de limpieza, movimiento de tierra, excavaciones menores a 1 metro, cerramientos provisionales, casetas de bodegaje, vestidores y unidades sanitarias para obreros dentro del predio. Estas obras no requieren registro de construcción ni autorización municipal, pero sí deben notificarse a la Dirección de Control de Edificación para su verificación posterior
--	--	---

Fuente: Alcaldía de General Villamil Playas (2025). Elaborado por: Benavides y Maridueña (2025).

Tabla 45: Requerimiento y metodología que quiere cumplir.

NEC-SE-DS	Factor Z	Se define cuáles son los requerimientos y metodologías que deben cumplir las empresas o industrias de la construcción al momento de diseñar y desarrollar edificaciones u otras estructuras sismos resistentes, de acuerdo a la NEC-SE-DS. Dentro de los requerimientos de la NEC-SE-DS se contempla la zonificación sísmica donde se va a construir la estructura, donde lo define como "Factor Z" y ayuda a establecer el peligro sísmico de la ubicación.
-----------	----------	---

Tabla 46: Clasificación de suelo.

Fuente: Alcaldía de General Villamil Playas (2025). Elaborado por: Benavides y Maridueña (2025).

2.5.2 Normativas estructurales

Tabla 47: Normas técnicas ecuatorianas.

Normas Técnicas Ecuatorianas (NTE INEN)
Pendientes longitud
Pendientes longitud

Normas Técnicas Ecuatorianas (NTE INEN)
Pendientes longitud

Masta 10 metros; 8%

Description (NTE INEN)

Description (NTE INEN)

Pendientes Inenties (NT

Tabla 48: Especificaciones en obras menores.

		a) Coeficiente de Ocupación del Suelo (COS), máximo 60% correspondiente a la relación entre el área máxima de implantación de la edificación y el área del lote.
Art. 17. INDICADORES DE EDIFICABILIDAD	17.4. INTENSIDAD DE EDIFICACIÓN	b) Coeficiente de Utilización del suelo (CUS), máximo 150% correspondiente a la relación entre el área de construcción y el área del lote; para el cálculo de este componente no se considerará la parte edificada hacia el subsuelo, ni las destinadas a estacionamientos para servicio de sus residentes, ni las destinadas a instalaciones técnicas del edificio.

Fuente: Alcaldía de General Villamil Playas (2025). Elaborado por: Benavides y Maridueña (2025).

Tabla 49: Requisitos específicos.

ACCESIBILIDAD DE LAS PERSONAS AL MEDIO FÍSICO. EDIFICIOS. CORREDORES Y PASILLOS. CARACTERÍSTICAS GENERALES.	NTE INEN 2 247	2.1 Requisitos específicos: Los corredores y pasillos en el interior de las viviendas, deben tener un ancho mínimo de 1 000 mm. Cuando exista la posibilidad de un giro > a 90° el pasillo debe tener un ancho mínimo de 1 200 mm. Los corredores y pasillos en edificios de uso público, deben tener un ancho mínimo de 1 200 mm. Donde se prevea la circulación frecuente en forma simultánea de dos sillas de ruedas, éstos deben tener un ancho mínimo de 1 800 mm. Los corredores y pasillos deben estar libres de obstáculos en todo su ancho mínimo y desde su piso hasta un plano paralelo a él ubicado a 2 050 mm de altura.
---	----------------	---

Fuente: Alcaldía de General Villamil Playas (2025).

2.5.3 Normativas medioambientales

Tabla 50: Uso de suelos.

Art. 6. CORREDORES VIALES- COMERCIALES Y ZONAS DE PLANIFICACIÓN	Art. 6.3 ZONA DE PLANIFICACIÓN	El cantón Playas por su uso de suelo está dividido en 5 zonas: 6.3.1 ZONA 1 PLAYA (Z-PL) Estrato 1 (ZPL1) Estrato 2 (ZPL2) Estrato 3 (ZPL3) 6.3.2 ZONA 2 RESERVA ECOLÓGICA (Z-RE) 6.3.3 ZONA 3 RESIDENCIA TURÍSTICA (Z-RT) Residencial Turística Consolidada (Z-RT1) Residencial Turística de Proyección (Z-RT1) 6.3.4 ZONA 4 COMERCIAL RESIDENCIAL (casco comercial) (Z-CR) Residencial (Z-CR1) Turística (Z-CR2) Comercial (Z-CR3)
---	--------------------------------	--

Tabla 51: Uso de suelos. Excepción (Z-CR3E) Malecón (Z-CR4) 6.3.5 ZONA 5.- SERVICIOS Y EQUIPAMIENTO URBANO (Z-SE) Fuente: Alcaldía de General Villamil Playas (2025). Elaborado por: Benavides y Maridueña (2025). Tabla 52: Uso suelo. Fuente: Alcaldía de General Villamil Playas (2025). Dentro de este espacio no se puede ubicar elementos que lo invadan (ejemplo: luminarias, carteles, equipamiento, partes propias del edificio o de instalaciones). En los corredores y pasillos, poco frecuentados de los edificios de uso público, se admiten reducciones localizadas del ancho mínimo. El ancho libre en las reducciones nunca debe ser menor a 900 mm

Elaborado por: Benavides y Maridueña (2025).

CAPÍTULO III

MARCO METODOLÓGICO

3.1 Enfoque de la Investigación

El presente proyecto adopta un enfoque mixto de investigación, integrando los métodos cualitativo y cuantitativo. El enfoque cualitativo es un método de investigación que busca profundizar temas como fenómenos sociales, percepciones o experiencias, esto permitirá ver la realidad del entorno del lugar donde los resultados se analizarán de forma más natural. El enfoque cuantitativo se basa en un análisis numérico, esto será fundamental para la medición de las diferentes variables numéricas y analizar datos estadísticos derivadas de las hipótesis que arrojen las teorías previas del sector.

3.2 Alcance de la Investigación: Exploratorio y Descriptivo

El presente estudio tiene un alcance exploratorio y descriptivo. El enfoque exploratorio permitirá identificar y comprender las problemáticas sociales, físicas y ambientales del cantón General Villamil Playas, especialmente en las zonas vulnerables a fenómenos naturales. El método exploratorio ayudará a conocer las problemáticas y necesidades del entorno y el lugar del proyecto, por parte del método descriptivo su investigación es mucho más detallada o precisa por medio de recolección de datos estadísticos o variables numéricas para analizar el desarrollo de la propuesta.

3.3 Técnicas e Instrumentos

Tabla 53: Técnicas.

Técnica	Definición
	La encuesta se utilizará como técnica de
	recolección de datos aplicada a una
	muestra representativa de los habitantes
Encuestas	del cantón General Villamil Playas.
Liicuestas	Permitirá identificar condiciones del
	entorno físico (clima, terreno,
	infraestructura) y necesidades sociales
	relacionadas con la vivienda temporal y su

nivel	de	aceptación	frente	а	soluciones
modu	llare	es.			

Tabla 54: Instrumentos.

Instrumento	Definición
	El cuestionario es una herramienta
	estructurada compuesta por preguntas
	tanto cerradas como abiertas, creada para
	recoger información de forma sistemática y
	comparable. Su propósito es recopilar
Cuestionario	datos tanto cualitativos como cuantitativos
	que permitan describir las condiciones
	socioespaciales de los residentes y validar
	criterios necesarios para el desarrollo de
	un prototipo de vivienda modular
	emergente en contextos de riesgo.

Elaborado por: Benavides y Maridueña (2025).

3.4 Población y Muestra

La población objeto de estudio está conformada por habitantes del cantón General Villamil Playas, provincia del Guayas, cuya población total es de 80.909 personas según datos del INEC (2022) para que tus resultados tengan validez estadística con un 95% de confianza y 5% de margen de error.

Fórmula de muestreo para población finita:

$$n = \frac{Z^2 \cdot P \cdot Q \cdot N}{e^2(N-1) + Z^2 \cdot P \cdot Q}$$

n= Tamaño de la muestra

N= Población total (80.909 habitantes de General Villamil Playas)

Z= Valor Z para el nivel de confianza (1.96 para 85%)

P= Proporción esperada (0.50 si se conoce)

Q= Proporción esperada (0.50 si se conoce)

e= Margen de error (0.05=5%)

$$n = \frac{(1.92)^2 \cdot 0.50 \cdot 0.50 \cdot 80909}{0.05^2 \cdot (80909 - 1) + (1.92)^2 \cdot 0.50 \cdot 0.50}$$

$$(1.92)^2 = 3.8416$$

$$3.8416 \cdot 0.50 \cdot 80909 = 77705.00036$$

$$(0.5)^2 = 0.0025$$

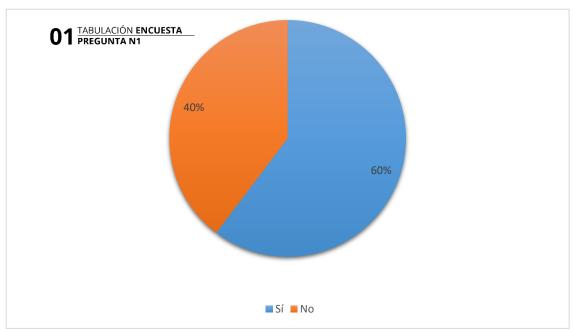
$$0.0025 \cdot 80908 = 202.27$$

$$202.27 + (3.8416 \cdot 0.50 \cdot 0.50) = 202.27 + 0.9604 = 203.2304$$

$$n = \frac{77705.00036}{203.2304} \approx 382.33$$

$$n \approx 382$$

CAPÍTULO IV

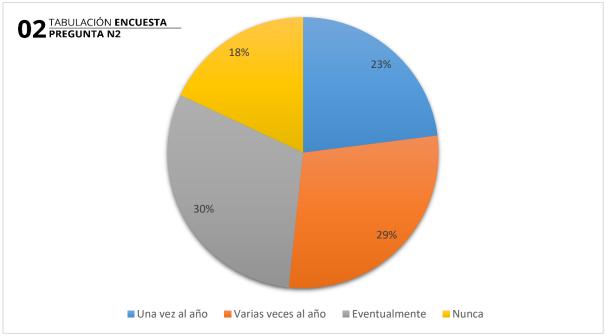

PRESENTACIÓN DE RESULTADOS Y PROPUESTAS

4.1 Presentación de Resultados

El propósito de esta encuesta es recopilar opiniones acerca de las necesidades espaciales y funcionales de un prototipo de vivienda temporal. Los datos obtenidos ayudarán a orientar el diseño arquitectónico del prototipo, centrándose en elementos fundamentales como la infraestructura, la comodidad, la seguridad y el bienestar de las personas damnificadas.

1. ¿Ha sido usted o su familia afectado por inundaciones en los últimos 5 años?

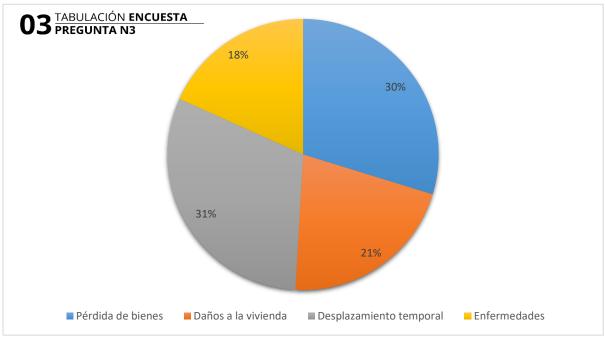
Elaborado por: Benavides y Maridueña (2025).


Análisis:

- Más del 60% de los encuestados, es decir, 231 personas, han sufrido de manera directa o indirecta los efectos de inundaciones en los últimos cinco años, lo que evidencia que este fenómeno representa un problema relevante para esta comunidad.
- Por otro lado, 152 participantes (40%) no han sido afectados por inundaciones,
 lo que indica que, aunque una parte significativa de la población no ha

enfrentado esta dificultad, la prevalencia del problema sigue siendo considerable.

2. ¿Con qué frecuencia se presentan inundaciones en su sector?


Elaborado por: Benavides y Maridueña (2025).

Análisis

- El 116 (30.29%) indica que las inundaciones ocurren eventualmente, es decir, con una frecuencia irregular o poco predecible, pero presente en el sector.
- El 110 (28.72%) experimenta inundaciones varias veces al año, lo que representa una frecuencia alta y recurrente, señalando una vulnerabilidad significativa en esas áreas.
- El 88 (22.98%) sufre inundaciones una vez al año, lo que también es un indicador de riesgo constante y periódico.
- Solo el 69 (18.03%) reporta que nunca han tenido inundaciones, siendo la minoría, lo que sugiere que la mayoría de la población está expuesta a algún nivel de riesgo por inundaciones.

3. ¿Cuáles han sido las principales consecuencias que ha sufrido por causa de las inundaciones?

Elaborado por: Benavides y Maridueña (2025).

Análisis

- Pérdida de bienes: 114 votos, que representa el 30% del total de votos.
- Daños a la vivienda: 81 votos, equivalentes al 21% del total.
- Desplazamiento temporal: 118 votos, que corresponde al 31%.
- Enfermedades: 70 votos, que representan el 18%.

Las afectaciones más frecuentes y relevantes para las personas que sufren inundaciones incluyen la pérdida de sus pertenencias y los daños materiales en sus viviendas. A estas consecuencias se suman el desplazamiento temporal y diversas afecciones de salud, como enfermedades relacionadas. Estos hallazgos coinciden con estudios anteriores que destacan cómo las inundaciones generan daños significativos en bienes y hogares, además de impactos negativos en la salud derivados de la presencia de agua estancada y las condiciones insalubres que esta provoca.

4. ¿Cuenta su vivienda actual con algún tipo de protección ante eventos naturales (muros, drenaje, elevación)?

O4 TABULACIÓN ENCUESTA
PREGUNTA N4

40%

Sí ■No

Ilustración 30: Tabulación Encuesta – Pregunta 4.

Elaborado por: Benavides y Maridueña (2025).

Análisis

Aproximadamente 153 viviendas (40%) disponen de algún tipo de protección contra eventos naturales, como muros, sistemas de drenaje o elevación, mientras que 230 viviendas (60%) carecen de estas medidas. Esto evidencia que la mayoría significativa de las viviendas se encuentra en situación de vulnerabilidad ante posibles desastres naturales, lo que resalta la importancia de fortalecer las estrategias de gestión del riesgo y mejorar las medidas de protección habitacional dentro de la comunidad.

5. ¿Considera que existen suficientes albergues o refugios en su zona ante desastres?

O5 TABULACIÓN ENCUESTA
PREGUNTA NS

20%

20%

60%

■ Sí ■ No ■ No lo sé

Ilustración 31: Tabulación Encuesta – Pregunta 5.

Elaborado por: Benavides y Maridueña (2025).

Análisis

- 229 (60%) de los encuestados considera que no existen suficientes albergues o refugios en su zona para enfrentar desastres.
- Solo un 77 (20%) piensa que sí hay suficientes albergues o refugios.
- Otro 77 (20%) no sabe si existen suficientes albergues o refugios, lo que puede indicar falta de información o desconocimiento sobre la infraestructura local.

6. ¿De cuántas personas se compone su grupo familiar?

06 PREGUNTA N6

9%

30%

19%

42%

■ 1-2 ■ 3-4 ■ 5-6 ■ Más de 6

Ilustración 32: Tabulación Encuesta - Pregunta 6.

Análisis:

El tipo de grupo familiar más común es aquel que cuenta con entre 3 y 4 integrantes, representando el 42% del total, es decir, 160 hogares. En segundo lugar, se encuentran los hogares pequeños, formados por 1 o 2 personas, que constituyen el 30% equivalente a 115 unidades familiares. Los hogares medianos, con una población de 5 a 6 miembros, representan aproximadamente una quinta parte, con 75 hogares o un 19%. Finalmente, los hogares grandes, que tienen más de 6 personas, son los menos frecuentes, sumando 33 y constituyendo un 9% del total.

7. ¿Cuántos espacios funcionales considera indispensables para una vivienda temporal digna?

TABULACIÓN ENCUESTA
PREGUNTA N7

15%

31%

14%

31%

15 o más (zona de descanso, cocina, baño)

Ilustración 33: Tabulación Encuesta - Pregunta 7.

Análisis:

- Con un 54% (214), que 3 o más espacio es suficiente (zona de descanso.
 Cocina, baño).
- Un 31% (122) piensa que son suficientes 2 espacios (zona de descanso y cocina), lo que indica una visión intermedia que prioriza al menos las funciones básicas de descanso y alimentación.
- Solo un 15% (57) considera que un espacio único es suficiente, lo que puede reflejar una percepción más limitada o de emergencia extrema, pero menos favorable para la dignidad y funcionalidad.

8. ¿Qué materiales considera más apropiados para viviendas temporales en zonas costeras?

TABULACIÓN ENCUESTA

8%

42%

A2%

Madera tratada Paneles metálicos Plásticos reciclables Otros

Ilustración 34: Tabulación Encuesta – Pregunta 8.

Análisis:

- La madera tratada es la alternativa más elegida, con unos 174 votos (42%) de preferencia. Esto coincide con las recomendaciones técnicas que destacan especies tropicales como el ipe o la teca, debido a su resistencia a la humedad, la salinidad y a los insectos. Además, estas maderas aportan una apariencia cálida, aunque necesitan un mantenimiento periódico.
- Los paneles metálicos representan el 107 (26%) de las elecciones, y en ambientes costeros se aconseja utilizar acero galvanizado o inoxidable para prevenir la corrosión causada por la sal y la humedad.
- Los plásticos reciclables cuentan con un 98 (24%) de apoyo, probablemente debido a su ligereza, resistencia al agua y potencial sustentable, aunque no son tan comunes para estructuras principales en zonas costeras.
- Finalmente, un 31 (8%) prefiere otros materiales, que podrían incluir concreto marino, fibras de cemento, vinilo u otras opciones innovadoras recomendadas por su durabilidad y resistencia en entornos costeros.

9. ¿Preferiría un refugio temporal que pueda ser reubicado o una solución fija dentro del mismo sector?

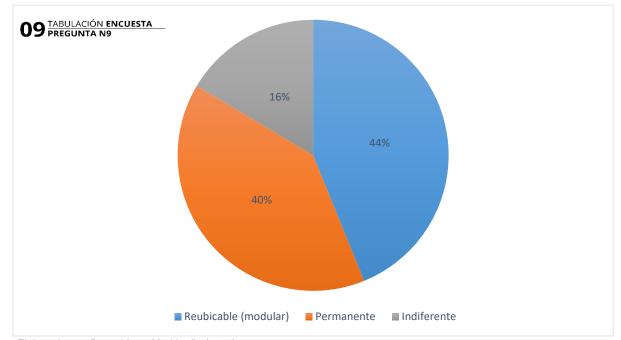


Ilustración 35: Tabulación Encuesta - Pregunta 9.

Análisis:

- La mayoría, con 168 personas (44%), prefieren un refugio temporal que sea reubicable o modular, lo que demuestra una inclinación positiva hacia alternativas flexibles capaces de adaptarse a distintas ubicaciones o necesidades futuras, facilitando la movilidad en situaciones de emergencia o cambios en el entorno.
- Por otro lado, 152 personas (40%) optan por una solución permanente dentro del mismo sector, reflejando un interés importante por disponer de una vivienda estable y fija, que probablemente proporcione mayor seguridad y confort a largo plazo.
- Un 63 (16%) se muestra indiferente, lo que puede reflejar que para este grupo la modalidad del refugio no es un factor decisivo o que están abiertos a ambas opciones.

10. ¿Estaría dispuesto a habitar una vivienda temporal prefabricada durante una emergencia?

1 OPREGUNTA N10

38%

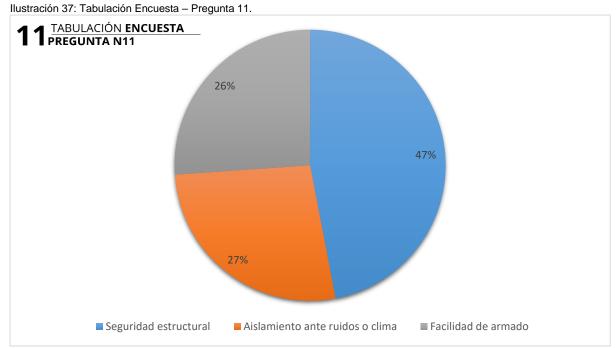

43%

Ilustración 36: Tabulación Encuesta - Pregunta 10.

Análisis:

- Un 43% de los encuestados (163 personas) manifestó estar dispuesto a vivir en una vivienda temporal prefabricada durante una situación de emergencia sin requerir condiciones adicionales, lo que indica una notable aceptación hacia este tipo de soluciones habitacionales.
- Un 19% (73 personas) condiciona su disposición a que la vivienda sea segura y funcional, lo que indica que la calidad, seguridad y funcionalidad son factores decisivos para casi cuatro de cada diez personas.
- El 38% (147 personas) no estaría dispuesto a vivir en una vivienda temporal prefabricada, lo que indica un grado de rechazo o falta de confianza hacia esta alternativa.

11. ¿Qué características considera prioritarias en una vivienda emergente?

Elaborado por: Benavides y Maridueña (2025).

Análisis

- La seguridad estructural es el aspecto más destacado, con unas 180 menciones, representando el 47% del total, lo que refleja la prioridad de que las viviendas temporales tengan la capacidad de soportar fenómenos naturales como terremotos y fuertes vientos, asegurando de esta manera la protección de quienes las habitan.
- El aislamiento frente al ruido y las condiciones climáticas recibe unas 100 personas encuestadas (27%) reflejando que el confort térmico y acústico también son factores clave para asegurar un entorno habitable adecuado dentro del hogar.
- Por último, la facilidad de montaje representa un (28%) unas 103 personas encuestadas, evidenciando la necesidad de que la vivienda pueda ser construida de manera rápida y sencilla, preferiblemente sin requerir mano de obra especializada, para facilitar su implementación en situaciones de emergencia.

12. ¿Considera importante que la comunidad participe en el diseño o armado de los refugios?

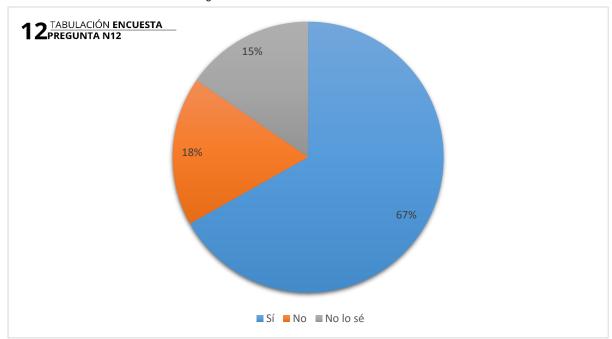


Ilustración 38: Tabulación Encuesta - Pregunta 12.

Elaborado por: Benavides y Maridueña (2025).

Análisis

- Un total de 256 personas (67%) consideran fundamental la participación de la comunidad en el diseño o construcción de refugios temporales, lo que muestra un amplio consenso sobre la importancia de incluir a los usuarios finales para garantizar que las soluciones habitacionales se ajusten a sus necesidades reales, así como a sus contextos culturales y condiciones locales.
- Un 68 (18%) no considera importante esta participación, lo que puede deberse a percepciones de que el diseño debe ser técnico o estandarizado, o falta de conocimiento sobre los beneficios de la participación comunitaria.
- Un 59 (15%) está indeciso o no sabe, lo que indica la necesidad de mayor sensibilización y difusión sobre el valor de la colaboración comunitaria en procesos de emergencia.

4.2 Análisis de Resultados DAFO

Ilustración 39: Análisis Dafo.

DEBILIDADES

- La construcción y despliegue de viviendas modulares puede depender de la disponibilidad de materiales y financiamiento externo, especialmente en emergencias
- externo, especialmente en emergencias

 Aunque el prototipo está pensado para ser de fácil armado, la ausencia de capacitación mínima en la comunidad podría retrasar la instalación eficiente
- el 60% de las carreteras del cantón están en mal estado, lo que puede dificultar el transporte y montaje de los módulos en zonas afectadas.

A

AMENAZAS

- Fenómenos más severos de lo previsto pueden superar la capacidad de respuesta del prototipo y de las instituciones locales
- La falta de recursos económicos a nivel municipal o nacional puede frenar la producción y despliegue de las viviendas emergentes.
- La comunidad podría mostrar reticencia a adoptar soluciones temporales o modulares si no se consideran adecuadamente sus costumbres y expectativas

F

FORTALEZA

- Fenómenos más severos de lo previsto pueden superar la capacidad de respuesta del prototipo y de las instituciones locales.
- La falta de recursos económicos a nivel municipal o nacional puede frenar la producción y despliegue de las viviendas emergentes.
- La comunidad podría mostrar reticencia a adoptar soluciones temporales o modulares si no se consideran adecuadamente sus costumbres y expectativas

O

OPORTUNIDADES

- La recurrencia de inundaciones crea una necesidad constante de soluciones habitacionales temporales, lo que justifica la inversión en este tipo de proyectos.
 El éxito del prototipo puede
- El éxito del prototipo puede servir de modelo para otras zonas vulnerables del país, abriendo oportunidades de escalabilidad y transferencia tecnológica.
- I interés de organismos públicos y privados en la gestión de riesgos puede facilitar financiamiento, capacitación y difusión del proyecto.

Elaborado por: Benavides y Maridueña (2025).

4.3 Análisis de territorio

4.3.1 Llenos y vacíos

Ilustración 40: Llenos y vacíos.

Elaborado por: Benavides y Maridueña (2025).

El análisis del mapa de áreas edificadas y libres en la cabecera cantonal de General Villamil Playas permite comprender la distribución actual del uso del suelo y reconocer las zonas que permanecen sin construcción. Esta representación cartográfica diferencia entre los sectores urbanos ya consolidados y aquellos con menor intervención humana, facilitando la identificación de espacios adecuados para futuros proyectos de desarrollo urbano. Asimismo, resulta fundamental para localizar terrenos que cuenten con buena accesibilidad, servicios básicos y una integración armoniosa con el entorno urbano existente.

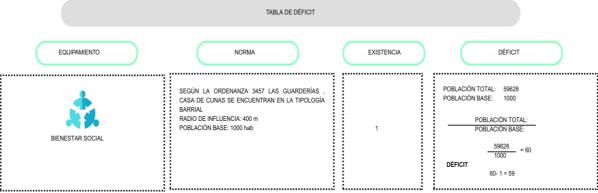
4.3.2 Equipamientos

4.3.2.1 Radio de influencia de equipamientos.

Ilustración 41: Radio de influencia de equipamientos.

Elaborado por: Benavides y Maridueña (2025).

Para respaldar la propuesta de un hábitat emergente y temporal en la cabecera cantonal de Playas, se analizaron diversos indicadores urbanos que afectan directamente las condiciones de vida de las personas afectadas por situaciones de emergencia. Estos indicadores revelan carencias en infraestructura, servicios básicos, accesibilidad y seguridad del entorno, aspectos que justifican la relevancia y necesidad de la propuesta habitacional.


4.3.2.2 Equipamiento de Bienestar Social.

Según el mapeo realizado a los equipamientos de bienestar social, se registró 1 guardería que atienda esta necesidad en toda la ciudad, esta visualización identifica la falta de este tipo de infraestructuras en la ciudad.

Ilustración 42: Equipamiento de Bienestar Social.

Tabla 55: Equipamiento de Bienestar Social.

Elaborado por: Benavides y Maridueña (2025).

De acuerdo con lo establecido en la Ordenanza 3457, las Guarderías y casas de cuna pertenecen al equipamiento de bienestar social, en la tipología barrial, esta normativa indica un radio de influencia de 400 metros y una población base de 1000 habitantes. Debido a que Playas cuenta con 59628 habitantes, se necesitan 60 equipamientos de tipo barrial, se cuenta con un único equipamiento, lo cual genera un déficit de 59 equipamientos.

4.3.2.3 Equipamiento Cultural.

De acorde al gráfico, se cuenta con una única infraestructura de carácter cultural que dé cobertura en todo el cantón, una clara evidencia sobre la escasez de espacios culturales para toda la población.

Ilustración 43: Equipamiento Cultural.

Tabla 56: Equipamiento Cultural.

Elaborado por: Benavides y Maridueña (2025).

Acorde a la Ordenanza 3457, la tipología zonal requiere de 6 equipamientos más el cantón registra solo uno, esto genera un déficit de un total de 5. Esto evidencia una falta de apoyo sobre la promoción y fortalecimiento de la identidad cultural.

4.3.2.4 Equipamiento de Educación.

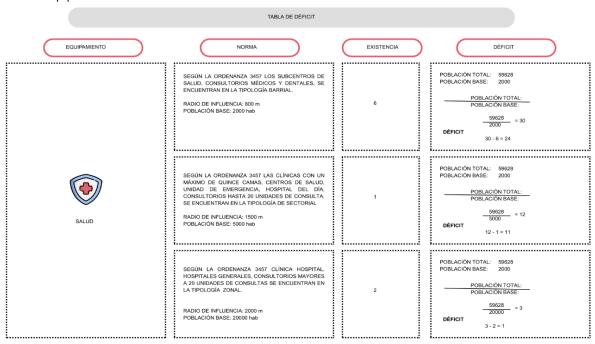
Sobre el mapeo de tipo educativo, se cuenta con 13 unidades educativas, para el cantón están por encima del 100% de cobertura, demostrado en tabla de déficit.

Ilustración 44: Equipamiento de Educación.

Tabla 57: Equipamiento de Educación.

Elaborado por: Benavides y Maridueña (2025).

Según la Ordenanza 3457, sobre los colegios secundarios y unidades educativas, la tabla de déficit demuestra el porcentaje de cobertura por encima del 100%, cumple con los estándares mínimos acorde a la población registrada.


4.3.2.5 Equipamiento de Salud.

Lo que se registra sobre los equipamientos de salud, es un déficit en las magnitudes barrial, sectorial y zonal, lo cual evidencia que la cobertura no asiste a toda la población. A continuación, se detalla los valores dentro de la tabla.

Ilustración 45: Equipamiento de Salud.

Tabla 58: Equipamiento de Salud.

Elaborado por: Benavides y Maridueña (2025).

Conforme a los lineamientos de la Ordenanza 3457, en la tipología barrial se requieren 30 equipamientos, de los cuales solo existen 4, generando un déficit de 26. En el nivel sectorial, se necesitan 12, pero solo hay 1, lo que implica un déficit de 11. Finalmente, en la categoría zonal, se exige un mínimo de 3 infraestructuras, y se cuenta con 2 hospitales generales, reflejando un déficit menor en este nivel.

4.3.2.6 Equipamiento Recreativo y Deportes.

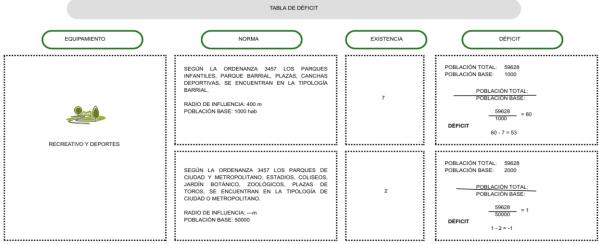

En este mapeo grafica la existencia de categoría barrial, un 12% de cobertura, lo cual no abastece a toda la demanda de espacios recreativos, seguido se encuentra un déficit positivo sobre el nivel ciudad o metropolitano, con una cobertura del 200% acorde a los 2 equipamientos que se encuentran en la ciudad.

Ilustración 46: Equipamiento Recreativo y Deportes.

Elaborado por: Benavides y Maridueña (2025).

Tabla 59: Equipamiento Recreativo y Deportes.

Elaborado por: Benavides y Maridueña (2025).

La tabla demuestra el déficit de equipamientos en la tipología Recreativo y Deportes, con respecto a la Ordenanza 3457, en el nivel barrial, se necesitan 60 y se cuenta con solo 7, lo que resulta en un déficit de esta infraestructura de 53, sobre el nivel ciudad o metropolitano, se exige un mínimo de 1, y existen 2 equipamientos, por lo cual están por encima del mínimo.

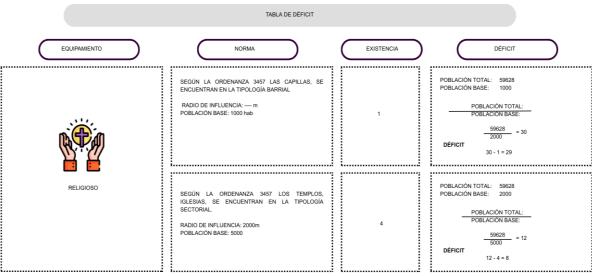
4.3.2.7 Equipamiento Religioso.

En este apartado existe una deficiencia de equipamientos demostrado en la tabla, de los cuales entre el nivel barrial y sectorial cubren el 2% y 33% respectivamente. La poca cobertura no fomenta a la accesibilidad y uso de espacios destinados a actividades religiosas.

SIMBOLOGÍA

Equipamiento Religioso
Racio de influencia (2000m)
Indicador de influencia de capilla
Radio de influencia (---m)
Radio de influencia (---m)

Indicador de influencia (2%


Radio de influencia (---m)

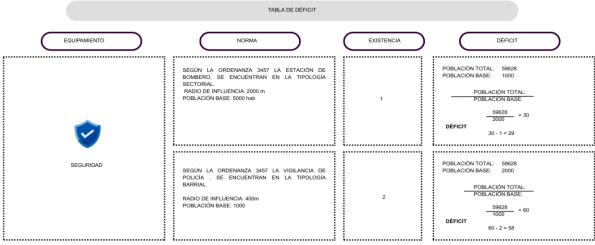
Cuerpo de Agua

Ilustración 47: Equipamiento Religiosa.

Elaborado por: Benavides y Maridueña (2025).

Tabla 60: Equipamiento Religiosa.

Los criterios técnicos definidos en la Ordenanza 3457, las capillas no definen un radio de influencia, y su población base es de 2000 habitantes, se requiere de 30 de esta clase de infraestructura, y solo se cuenta con 1, esto genera un déficit de 29. Las iglesias y templos, pertenecientes al nivel sectorial, se les otorgan un radio de influencia de 2000 metros, y una población base de 5000 habitantes, esto exige un mínimo de 12, se registran solo 4 iglesias, lo cual genera un déficit de 8.


4.3.2.8 Equipamiento de Seguridad.

La ciudad cuenta con dos Unidades de Policía Comunitaria y una estación de bomberos y ambos cubren con el 3% sobre su radio de influencia en la ciudad, lo cual es una cantidad pobre que no satisface la demanda. Esto provoca un gran déficit para la seguridad hacia sus usuarios.

Ilustración 48: Equipamiento de Seguridad.

Tabla 61: Equipamiento de Seguridad.

Elaborado por: Benavides y Maridueña (2025).

De acuerdo con lo establecido en la Ordenanza 3457, las Unidades de Policía Comunitaria pertenecen al nivel barrial, el cual abarca un radio de 400 metros y una población base 1000 habitantes, el mínimo está en 60, sin embargo, se posee 2 equipamientos de este nivel, y genera un déficit de 58. La estación de bomberos responde a un radio de 2000 metros y una población base de 5000 habitantes, lo cual incide en un mínimo exigible de 30 equipamientos, de los cuales se registran 1, esto genera un déficit de 28.

4.3.2.9 Equipamiento Administrativo.

El levantamiento cartográfico identificó los niveles barriales y de ciudad o metropolitano, los cuales ofrecen el 67% y 300% de cobertura ante dichos servicios, se detalla en la tabla de déficit los valores que registra cada apartado.

SIMBOLOGÍA

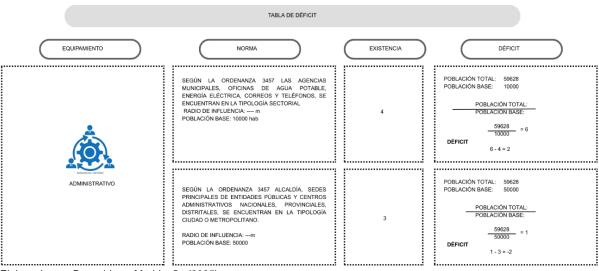
Equipamiento Administrativo Ciudad

Radio de influencia (--m)

Indicador de influencia 300%

Equipamiento Administrativo Barrial Radio de influencia (--m)

Indicador de influencia (--m)


Indicador de influencia 67%

Cuerpo de Agua

Ilustración 49: Equipamiento Administrativo.

Elaborado por: Benavides y Maridueña (2025).

Tabla 62: Equipamiento Administrativo.

Elaborado por: Benavides y Maridueña (2025).

Acorde a los parámetros que redacta la Ordenanza 3457, los equipamientos sectoriales no se designan con un radio de influencia y su población base es de 10000 habitantes, precisan de 6 equipamientos y se cuenta con 4, lo cual da un déficit de 2,

la tipología de ciudad o metropolitano exige una única instalación, y se cuenta con 3, esto genera un déficit positivo de 2.

4.3.2.10 Equipamientos de Servicios Funerarios.

El gráfico demuestra para la ciudad un equipamiento de ciudad o metropolitano, el cual cumple con el 100% de cobertura sobre el servicio hacia la ciudadanía, esto revela que esta sección no posee inconvenientes sobre su capacidad de abastecimiento.

SIMBOLOGÍA

Equipamiento de Cementerio
Radio de influencia (---m)

96 Indicador de influencia 100%

Cuerpo de Agua

Ilustración 50: Equipamiento de Servicios y Funerarias.

Elaborado por: Benavides y Maridueña (2025).

Tabla 63: Equipamiento de Servicios y Funerarias.

Elaborado por: Benavides y Maridueña (2025).

El déficit, de acuerdo con la Ordenanza 3457, demuestra que es de 0, cumpliendo con el 100%, se necesitan de 1 servicio funerario de nivel ciudad y se cuenta con 1 cementerio.

4.3.2.11 Equipamiento de Transporte.

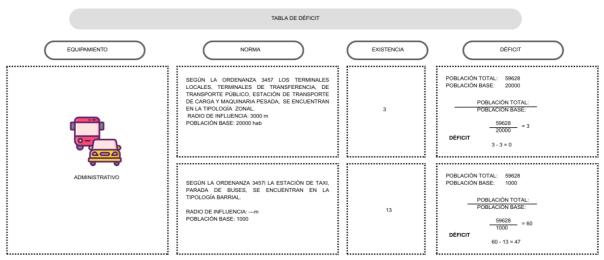
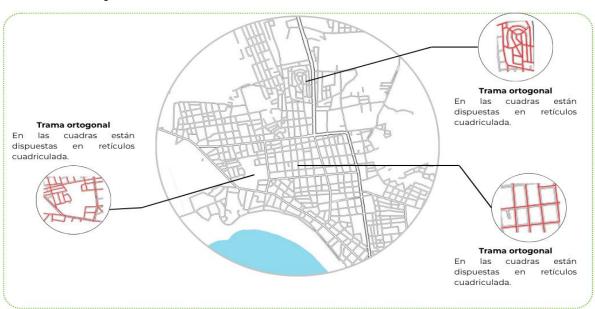

En Playas se mapeó las cooperativas de transporte y parada de buses, con un 100% y 22% de cobertura y corresponden a las tipologías zonales y barriales respectivamente, se demuestra una falta atención hacia la movilidad urbana que ofrecen a la localidad.

Ilustración 51: Equipamiento de Transporte.

Elaborado por: Benavides y Maridueña (2025).

Tabla 64: Equipamiento de Transporte.



Elaborado por: Benavides y Maridueña (2025).

La Ordenanza 3457 dicta que las estaciones de taxis y paradas de buses sumen un mínimo de 60 espacios destinados a la categoría barrial, de los cuales se cuentan con un total de 13, esto significa en un déficit de 47. Con respecto a la tipología zonal, se exige de 3 y se cuentan con 3 equipamientos, se comprende que se cumple con las exigencias mínimas sobre estos servicios.

4.3.3 Morfología urbana

Ilustración 52: Morfología urbana.

Fuente: Google earth (2025).

Elaborado por: Benavides y Maridueña (2025).

Tabla 65: Aspectos de la trama ortogonal de Playas.

Aspectos de la trama ortogonal de Playas

- Facilita la orientación y la distribución de servicios urbanos.
- Permite una expansión ordenada y clara diferenciación de usos del suelo
- Puede generar un elevado número de intersecciones, lo que influye en la circulación vehicular
- Refleja la influencia de la planificación urbana moderna y la adaptación a un terreno mayormente llano

Fuente: Google earth (2025).

Elaborado por: Benavides y Maridueña (2025).

4.3.4 Vialidad

La av. Jaime Roldós Aguilera es una vía clave para red vial de Villamil Playas, con proyectos activos para la rehabilitación y revitalización que busca mejorar la conectividad del cantón. Las vías secundarias como terciarias buscan conectar de manera eficiente las parroquias rurales y comunidades aledañas desde el centro de

la ciudad hasta donde van a estar ubicados los prototipos de vivienda emergente (Prefectura ciudadana del Guayas, 2025).

Ilustración 53: Viabilidad.

Fuente: Google earth (2025).

Elaborado por: Benavides y Maridueña (2025).

4.3.5 Movilidad

La movilidad dentro del cantón se basa principalmente a través del transporte público, que abarca autobuses y taxis, además del uso frecuente de vehículos privados y tricimotos, muy habitual en la región. El control del transporte terrestre, el tránsito y la seguridad vial del cantón está a cargo la unidad de tránsito municipal (Vélez Del Hierro, Godoy Zúñiga, & Vélez Del Hierro, 2017).

Ilustración 54: Movilidad.

Fuente: Google earth (2025).

Elaborado por: Benavides y Maridueña (2025).

4.3.6 Accesibilidad

La avenida Jamie Roldós Aguilera es muy accesible hacia el terreno, el estado de las vías se encuentra en buena condición, siendo está una conexión directa de Engabao hacia el cantón Playas.

Ilustración 55: Accesibilidad.

4.3.7 Proximidad a redes

La infraestructura fundamental en las áreas periféricas de General Villamil Playas ha mostrado un progreso significativo. Se han realizado nuevas inversiones que han reforzado el suministro eléctrico, mientras que la red de alcantarillado y el acceso al agua potable están en proceso de expansión. Sin embargo, es importante destacar que la parcela en cuestión aún no cuenta con servicios de alcantarillado ni de agua potable.

4.3.8 Usos de suelos

Ilustración 56: Usos de Suelos.

Fuente: Google earth (2025).

Elaborado por: Benavides y Maridueña (2025).

4.3.9 Altura de edificaciones

Las alturas de las edificaciones están reguladas por la normativa municipal, en particular la ordenanza de "Ordenamiento Urbano, Régimen del Suelo y Normativa del uso y Edificaciones". Aunque la ordenanza no fija un límite especifico de altura, existen ciertas restricciones obligatorias que varían según la ubicación y el tamaño del terreno. Las construcciones en cuanto a departamentos y edificios rascacielos suele ser baja donde los edificios más altos alcanzan alturas superiores a los 100 metros (Ordenanza Municipal de Guayaquil, 2025).

4.4.1 Análisis de Selección de Terreno

El estudio del suelo resulta esencial para asegurar el éxito del diseño, ya que permite identificar las propiedades físicas y químicas del terreno. Esto es crucial porque el entorno influye directamente en la salud y el bienestar de quienes habitan el lugar. Se evaluarán tres terrenos posibles, tomando en consideración aspectos como las características del suelo, la vegetación presente, el nivel de ruido ambiental y la cercanía a servicios como hospitales y espacios recreativos.

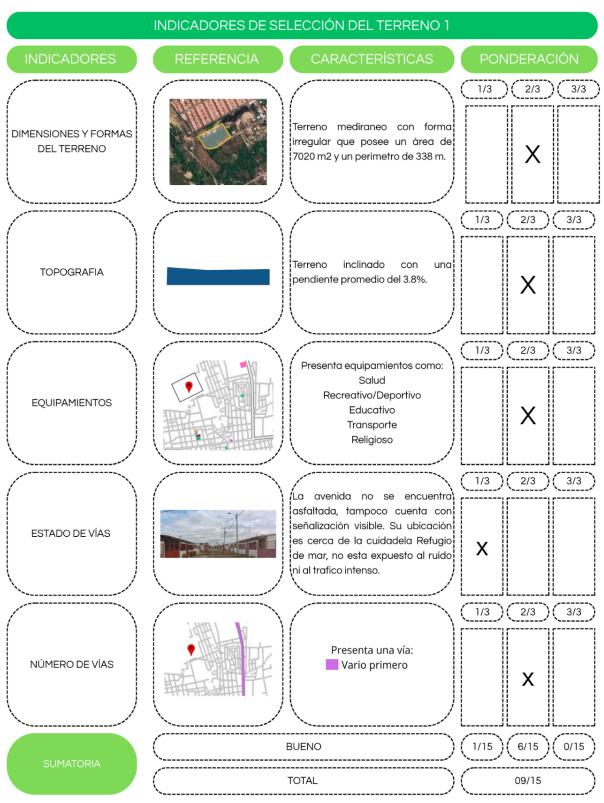
Ilustración 57: Análisis del terreno.

Fuente: Google earth (2025).

Elaborado por: Benavides y Maridueña (2025).

4.4.2 Situación actual en el territorio e indicadores de selección

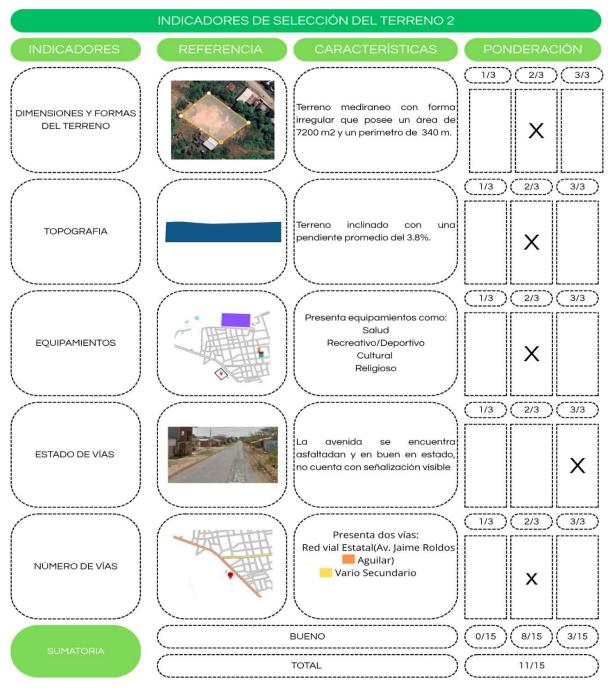
En este análisis se estudiarán tres terrenos, considerando una serie de indicadores claves como ubicación, dimensiones, topografía, equipamientos cercanos y estudios de vías. Estos criterios han sido seleccionados para evaluar cuál de los terrenos ofrece mejores condiciones para el desarrollo del proyecto.


4.4.3 Cuadro comparativo e indicadores de resultados

4.4.3.1 Indicadores de Selección del Terreno 1.

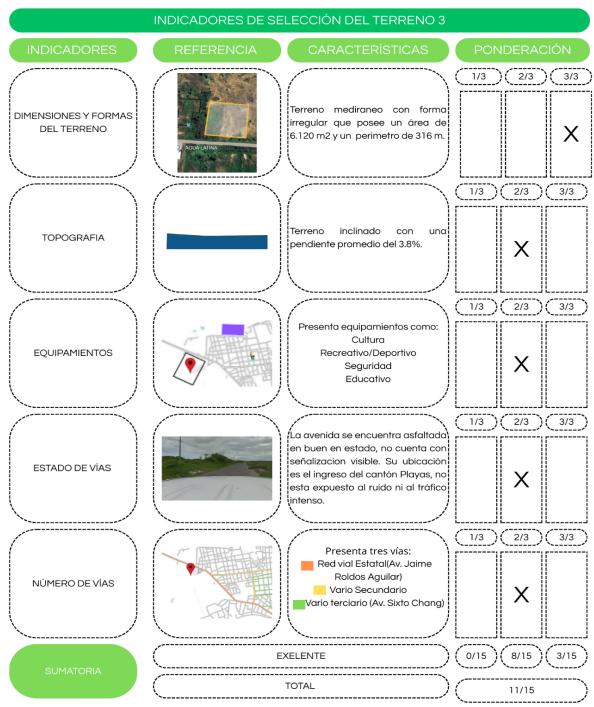
El Terreno 1, situado cerca a la vía Posorja cumple con varios aspectos como por sus dimensiones y características topográfica o equipamientos cercanos como

salud o transporte, lo que lo hace una opción atractiva para el desarrollo del proyecto. Sin embargo, tras un análisis se determinó que el terreno es viable.


Tabla 66: Indicadores de selección del terreno 1.

4.4.3.2 Indicadores de Selección del Terreno 2.

El Terreno 2, situado en la Av. Jaime Roldós Aguilera, cumple con las dimensiones y características topográficas. Su ubicación es ventajosa, ya que se dentro de los límites de Playas, no está expuestos a ruidos y la vía principal se encuentra en buen estado. Esto asegura un ambiente más tranquilo y adecuado para el descanso y el bienestar.


Tabla 67:Indicadores de selección del terreno 2.

4.4.3.3 Indicadores de Selección del Terreno 3.

El Terreno 3, ubicado en la Av. Jaime Roldós Aguilera, cuenta con una posición privilegiada al estar en la entrada de Playas. Además, está alejado de fuentes de ruido y la vía principal se encuentra en buen estado, lo que garantiza un entorno tranquilo, ideal para el descanso y el bienestar.

Tabla 68: Indicadores de selección del terreno 3.

4.4.3.4 Análisis de terreno seleccionado.

El estudio de la red pública es esencial para valorar la accesibilidad y la conexión del terreno destinado al proyecto de prototipo de vivienda temporal. La infraestructura vial se encuentra en buen estado, ya que esto afecta de manera directa la movilidad y seguridad de los habitantes, asegurando un entorno accesible y bien conectado con el resto de la ciudad.

Ilustración 58: Análisis del terreno seleccionado.

Fuente: Google earth (2025).

Elaborado por: Benavides y Maridueña (2025).

4.4.3.5 Asoleamiento.

La zona recibe una adecuada cantidad de radiación solar a lo largo de todo el año, con días que suelen estar parcialmente cubiertos por nubes y episodios de vientos, debido a su ubicación cercana a la línea ecuatorial, el sol sale por el este y se oculta por el oeste, con ligeras variaciones durante el año.

Ilustración 59: Análisis del Asoleamiento.

ANÁLISIS DEL ASOLEAMIENTO N O E

Fuente: Google earth (2025).

Elaborado por: Benavides y Maridueña (2025).

4.4.3.6 Análisis de vientos.

Los vientos en General Villamil predominan principalmente desde el noreste, siendo esta la dirección más común para la zona. La velocidad del viento suele oscilar entre 5 y 13 nudos (aproximadamente 9 a 24 km/h), con ráfagas que alcanzan esos valores máximos en distintos momentos del día (WINDFINDER, 2025).

Ilustración 60: Rosa de los Vientos.

Fuente: Google earth (2025).

4.5 Presentación de Propuesta

4.5.1 Descripción general

La propuesta consiste en el diseño de un prototipo de vivienda emergente modular, destinado a brindar alojamiento temporal a las personas afectadas por inundaciones recurrentes en el cantón General Villamil Playas, cuyo objetivo es dar un refugio temporal a las personas que han sido afectadas por inundaciones y lluvias.

4.5.2 Base conceptuales, espacial, formal, funcional, bioclimática

El diseño del prototipo arquitectónico se basó en cuatro pilares fundamentales: conceptual, formal, funcional y bioclimático. A continuación, se detallan estos aspectos, que orientan tanto la estructura como el diseño de la vivienda temporal, asegurando que el proyecto responda adecuadamente a sus requerimientos y metas.

CONCEPTO DE LA PROPUESTA

La vivienda temporal se concibe inicialmente a partir de una figura rectangular simple. Este rectángulo no solo representa la huella básica del espacio habitable, sino que permite la expansión modular y un orden estructural claro, fundamental al trabajar con sistemas de bastidores.

- Espacio Primario: el rectángulo define la zona esencial para las funciones básicas: dormir, refugiarse y realizar actividades cotidianas.
- Orden y modularidad: las proporciones rectangulares facilitan la división interna en módulos repetibles de bastidores, permitiendo rapidez en el montaje, desmontaje y transporte.
- Flexibilidad: a partir del rectángulo, los bastidores pueden disponerse en serie o apilarse, generando variaciones espaciales según las necesidades del usuario y el sitio.
- Adaptabilidad: el perímetro rectangular marca los límites iniciales, pero los bastidores permiten abrir, agregar o cerrar secciones, haciendo
 flexible la adaptación al clima, la orientación solar y los cambios en el uso.

Del rectángulo al bastidor

- El rectángulo define el área inicial.
- Cada lado sirve como base para montar una fila de bastidores modulares, que pueden ser de madera, metal o materiales reciclados.

Configuración interior

- Los bastidores internos pueden colocarse paralelos o perpendiculares a los muros principales, generando subespacios como áreas de descanso, almacenamiento o trabajo.
- El rectángulo permite una jerarquía clara: zonas públicas (acceso, estar) y zonas privadas (dormitorio, aseo).

Crecimiento y Ensamble

- El concepto rectangular permite ampliar la vivienda añadiendo más bastidores en los extremos o laterales, adaptándose al terreno o al número de usuarios
- La repetición del módulo rectangular facilita que la vivienda crezca de forma ordenada y eficiente.

Temporalidad y movimiento

- El sistema basado en bastidores y el rectángulo hace que cada unidad sea independiente, reutilizable y fácil de transportar.
- La racionalidad del rectángulo permite que los componentes encajen de forma lógica y rápida, crucial para situaciones de emergencia o diseño temporal.

Elaborado por: Benavides y Maridueña (2025).

Tabla 69: Base conceptual, espacial, funcional y bioclimática.

CONCEPTUAL FORMAL FUNCIONAL BIOCLIMÁTICA

La propuesta debe permitir que la vivienda se adapte a diferentes contextos y necesidades, mediante módulos o componentes flexibles puedan ensamblarse, aue desplegarse reconfigurarse 0 fácilmente. Esto facilita el transporte, montaje rápido y la posibilidad de ampliación reducción según la demanda.

Emplear estructuras livianas, como perfiles metálicos y materiales flexibles, que permitan una forma dinámica y adaptable sin perder estabilidad.

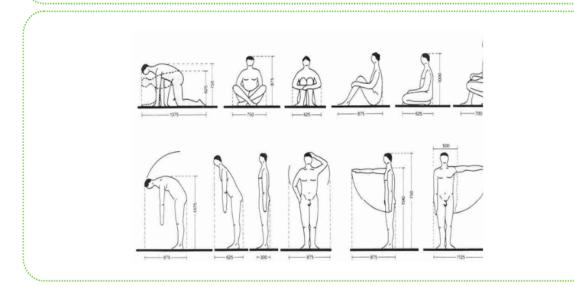
Considerar formas que faciliten la ventilación natural y el sombreado, como techos inclinados o voladizos. Distribución eficiente que permita privacidad, ventilación adecuada e iluminación natural o artificial.
Se debe considerar la diversidad de usuarios, incluyendo personas con movilidad reducida, niños y adultos mayores, con espacios accesibles y seguros para todos.

Áberturas estratégicas parà, permitir la circulación cruzada de aire, facilitando la renovación del aire interior y el enfriamiento pasivo sin necesidad de sistemas mecánicos.

Orientar la vivienda de manera que las ventanas principales estén orientadas hacia el ecuador para maximizar la captación de luz y calor, ademas añaidir paneles fotovoltaicos.

4.5.3 Criterios Antropométricos, Seguridad y Accesibilidad Universal

4.5.3.1 Criterios antropométricos.

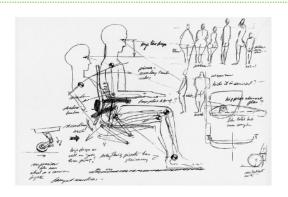

Tabla 70: Dimensiones humanas básicas y espacios mínimo.

Dimensiones humanas básicas y espacios mínimos

Antropometría: El módulo contempla espacios habitables mínimos adecuados para una familia promedio de tres a cuatro personas, considerando dimensiones estándar para zonas de descanso (mín. 2,20 m x 3,00 m).

Seguridad: El sistema estructural está diseñado con componentes modulares prefabricados, resistentes a cargas de viento y sismo según parámetros de la Norma Ecuatoriana de la Construcción NEC.

Accesibilidad universal: El prototipo se ajusta a los requerimientos de la Norma Técnica Ecuatoriana INEN 2247:2013, asegurando rampas de acceso

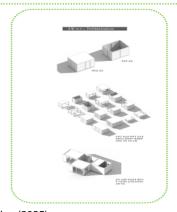


4.5.3.1.2 Relación entre espacio y función.

Tabla 71: Dimensiones humanas básicas y espacios mínimo.

Relación entre espacio y función

Ching destaca que la arquitectura debe estar orientada a la función y a las necesidades de quienes la habitan, por lo que los espacios deben diseñarse considerando la escala humana y las actividades que se realizarán en la vivienda. En el caso de las viviendas temporales, esto significa que cada zona, como el área de descanso, la cocina y la higiene, debe contar con dimensiones apropiadas y proporcionales al cuerpo humano para facilitar su uso


Fuente: Arquitectura: forma, espacio y orden (2025). Elaborado por: Benavides y Maridueña (2025).

4.5.3.1.3 Flexibilidad y adaptabilidad espacial.

Tabla 72: Flexibilidad y adaptabilidad.

Flexibilidad y adaptabilidad espacial

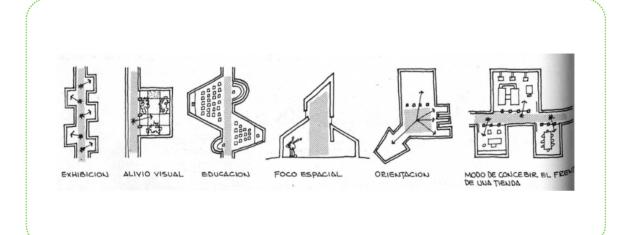
La arquitectura flexible, que puede integrarse con los principios de Ching sobre forma y espacio, plantea que las viviendas temporales deben poder ajustar su distribución interna de acuerdo con las necesidades variables de sus habitantes. Esto se logra mediante el uso de materiales flexibles que permiten la incorporación de paredes plegables, estructurales modulares y espacios que se pueden transformar, facilitando así la adaptación a distintos usos y condiciones.

4.5.3.2 Criterios de seguridad.

Tabla 73: Criterios de seguridad con materiales flexibles.

Criterios de seguridad con materiales flexibles

Aunque Ching no aborda directamente el uso de materiales flexibles, menciona que la arquitectura debe asegurar confort térmico ventilación adecuada y protección contra condiciones ambientales adversas, aspectos esenciales en viviendas temporales para enfrentar fenómenos naturales. Los materiales flexibles deben ayudar a proporcionar resistencia estructural y aislamiento necesario para mantener un ambiente seguro y saludable.


Fuente: Arquitectura: forma, espacio y orden (2025). Elaborado por: Benavides y Maridueña (2025).

4.5.3.3 Seguridad en acceso y circulación.

Tabla 74: Seguridad en acceso y circulación.

Seguridad en acceso y circulación

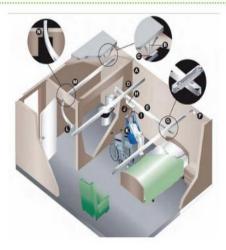
Ching subraya la importancia de diseñar accesos y recorridos seguros, sin obstáculos que puedan generar caídas o accidentales, especialmente en situaciones de emergencia. La vivienda debe permitir evacuaciones rápida y segura, con puertas y aberturas de dimensiones adecuadas y sin elementos peligrosos

4.5.3.4 Minimización de riesgos y tolerancia al error.

Tabla 75: Minimización de riesgos y tolerancia al error.

Minimización de riesgos y tolerancia al error

El diseño debe anticipar la reducción de riesgos causados para errores humanos o condiciones desfavorables, disponiendo los elementos de manera que se disminuya la probabilidad de accidentes. Esto implica eliminar o resguardar los elementos peligrosos y proporcionar señales visuales o táctiles que alerten sobre posibles peligros

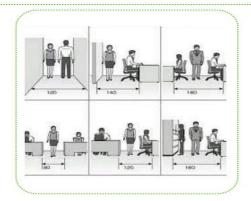

Fuente: Arquitectura: forma, espacio y orden (2025). Elaborado por: Benavides y Maridueña (2025).

4.5.3.5 Accesibilidad universal.

Tabla 76: Accesos sin barreras físicas.

Acceso sin barreras físicas

Las vías de acceso y desplazamiento dentro en los alrededores del hogar deben ser accesible, con pisos sólidos, estables y que no resbalen, además de estar libres de obstáculos, estables y que nos resbalen, además de estar libres de obstáculos que impidan el tránsito de personas con movilidad limitada o que usen sillas de ruedas.



4.5.3.6 Dimensiones adecuadas.

Tabla 77: Dimensiones adecuadas.

Dimensiones adecuadas

Puertas, pasillos y los espacios interiores deben contar con medidas mínimas que faciliten un tránsito cómodo y seguro para personas con diversas capacidades, incluyendo aquellas que utilizan silla de ruedas.

Fuente: Arquitectura: forma, espacio y orden (2025). Elaborado por: Benavides y Maridueña (2025).

4.5.4 Criterios Constructivos y Estructurales

Tabla 78: Criterios constructivos y estructurales.

CRITERIOS CONSTRUCTIVOS

Materiales adecuados: el uso de materiales ligeros, resistentes a la humedad y corrosión, como madera tratada (pino de Durango) y estructuras metálicas con protección anticorrosiva, que faciliten un ensamblaje rápido y flexible.

Adaptabilidad y modularidad: el sistema constructivo debe ser modular para permitir configuraciones flexibles según las necesidades familiares y comunitarias, facilitando el montaje y desmontaje en zonas de emergencia.

Aislamiento térmico y acústico: para el confort, las paredes y cubiertas deben contar con aislamiento termoacústico, especialmente en zonas sociales, y sistemas de ventilación natural cruzada para garantizar confort térmico en climas cálidos y húmedos como el de la costa.

CRITERIOS ESTRUCTURALES

Sistemas constructivos prefabricados: permiten un montaje rápido y seguro, con módulos estructurales prefabricados que faciliten la calidad y control en obra, minimizando residuos y costos Resistencia a cargas y sismos: la estructura debe diseñarse para soportar cargas permanentes y variables, incluyendo viento fuerte y posibles movimientos sísmicos, siguiendo normativas locales de construcción sismo-resistente.

Refuerzos y conexiones seguras: uso de refuerzos adecuados en columnas y vigas, con conexiones firmes que garanticen estabilidad estructural durante eventos climáticos adversos

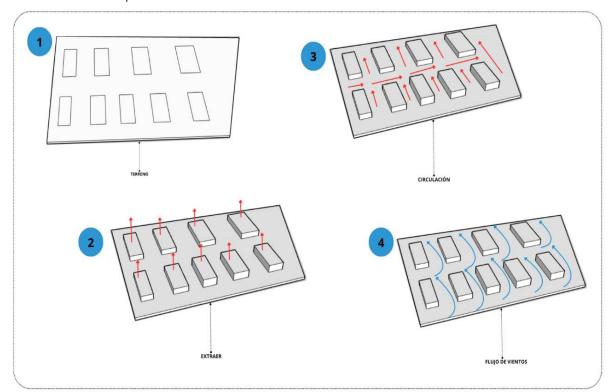
4.5.5 Criterios Bioclimáticos

Tabla 79: Criterios bioclimáticos.

CRITERIOS BIOCLIMATICOS

Orientación y ventilación natural: aprovechar la orientación para maximizar la ventilación cruzada, permitiendo que el viento fresco del mar circule dentro de la vivienda y reduzca la temperatura interior. Esto es fundamental para el confort térmico en climas cálidos y húmedos como el de Playas

Aprovechamiento de la energía solar: Considerar el uso de energía solar para necesidades básicas como iluminación o calentamiento de agua, dado el alto potencial solar de la región


Diseño compacto y con sombras naturales: evitar alta densidad constructiva en espacios reducidos para favorecer la circulación de aire y evitar acumulación de calor.

Protección solar: incorporar elementos que protejan la vivienda de la radiación solar directa, como aleros, toldos o vegetación, para evitar el sobrecalentamiento. Esto ayuda a mantener temperaturas interiores confortables sin necesidad de sistemas mecánicos de refrigeración

Elaborado por: Benavides y Maridueña (2025).

4.6 Partido Arquitectónico

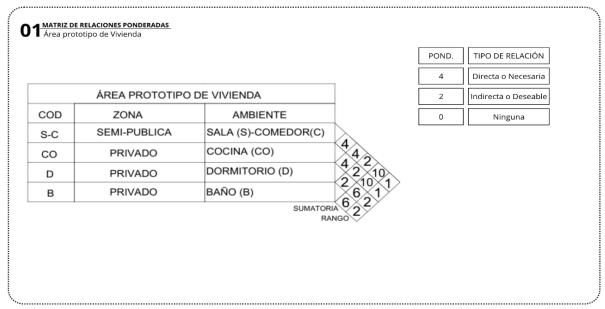
Ilustración 62: Partido Arquitectónico.

4.6.1 Programa de Necesidades

VIVIENDA TEMPORAL INSTALACIONES CONDICIONES AMBIENTALES **ESPACIOS** LUZ AGUA Iluminación Ventilación Natural y Sala-comedor Natural Χ Χ artificial Natural y Dormitorio Natural Χ Χ artificial Natural y Natural Comedor Χ Χ artificial Natural y Baños Χ Χ Natural

artificial

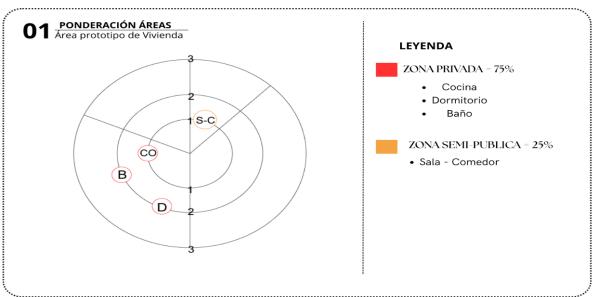
Tabla 80: Programa de necesidades de una vivienda Temporal.

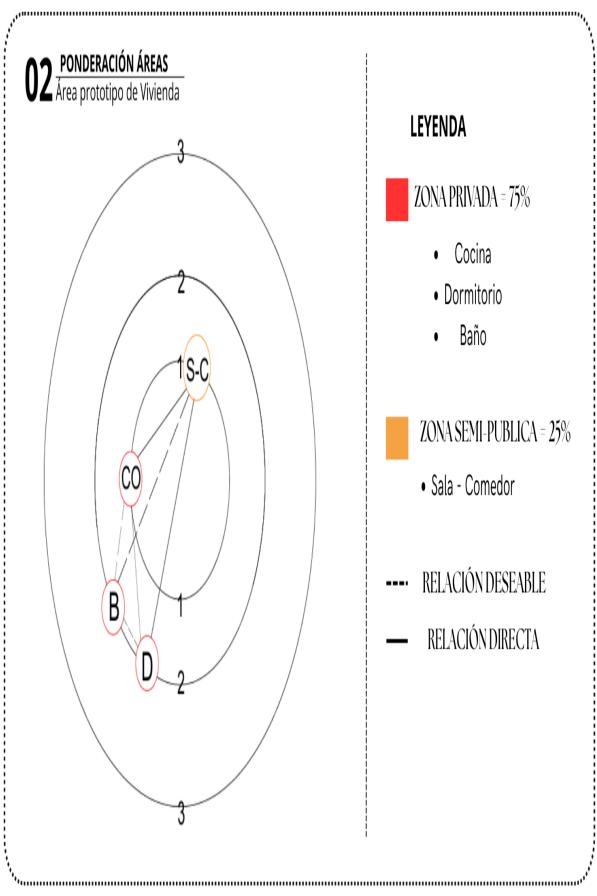

Elaborado por: Benavides y Maridueña (2025).

4.6.2 Diagrama de relaciones y funcionales

4.6.2.1 Matriz de relaciones ponderadas.

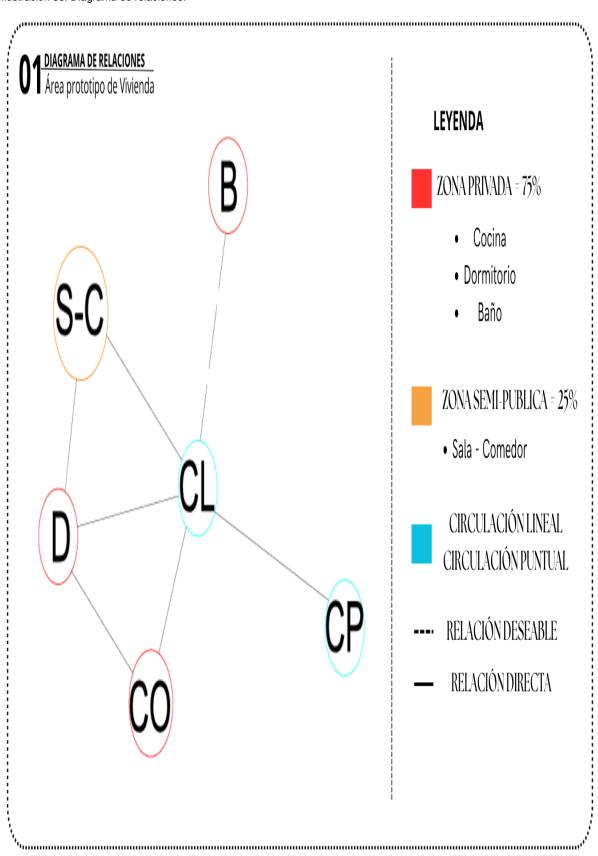
El diseño del prototipo de vivienda emergente se basa en un sistema de ponderación que evalúa cada área considerando su interrelación con las demás. A través de una matriz de relaciones, se determina la importancia de cada vínculo entre los espacios, lo que permite organizar de manera más eficiente la distribución de las zonas.


Ilustración 63: Matriz de relaciones-Área de Prototipo de vivienda.

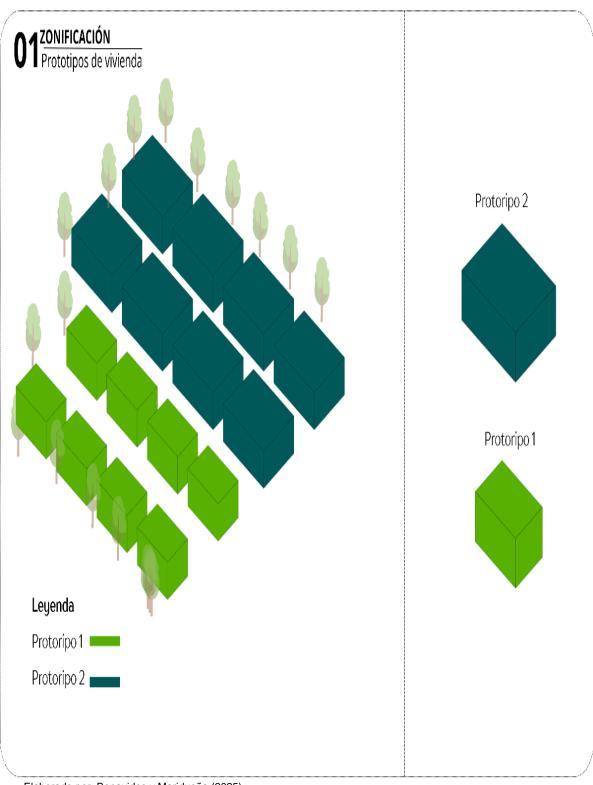


4.6.2.2 Ponderación de áreas.

Para organizar la distribución del proyecto, es fundamental establecer el porcentaje correspondientes a cada área, asignado proporciones adecuadas según la función y el uso de cada espacio. Eso facilita la creación de una jerarquía clara dentro del prototipo de vivienda. A continuación, se muestran las áreas de ponderación:


Ilustración 64: Ponderación de áreas.

4.6.2.3 Diagrama de relaciones.


Ilustración 66: Diagrama de relaciones.

4.6.3 Proceso de Zonificación de Áreas

La zonificación determina cómo se asignan los espacios según su uso, asegurando un diseño ordenado y funcional. A continuación, se presenta la propuesta:

Ilustración 67: Zonificación.



4.7 Resultados Obtenidos

4.7.1 Resultados Funcionales

4.7.1.1 Planos ilustrados

Ilustración 68: Plano ilustrado-Prototipo 1.

Prototipo de vivienda 1

El prototipo número uno integra los espacios esenciales para el hábitat de una familia, con el objetivo de optimizar la funcionalidad y la convivencia. Este diseño busca minimizar el tiempo de construcción mediante la conexión eficiente de los espacios fundamentales.

Leyenda

- 1 Dormitio
- 2 Baño
- 3 Sala-Comedor
- 4 Cocina

Ilustración 69: Planos ilustrados-Prototipo 2.

PLANOS ILUSTRADOS Prototipo de vivienda 2

Prototipo de vivienda 2

El prortotipo número dos se divide en dos modulos similares, conectados por medio de bastidores. Este prototipo busca minimizar el tiempo de construcción, conectando varios espacios esenciales para el habitát de varias familias.

Leyenda

- 1 Dormitorio
- 2 Baño
- 3 Sala-Comedor
- 4 Cocina

4.7.1.2 Implantaciones.

Ilustración 70: Implantación general.

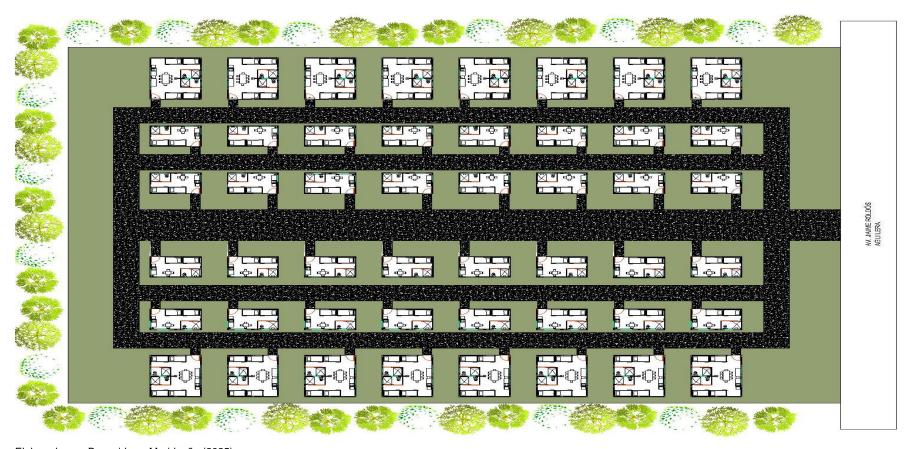


Ilustración 71: Implantación de cubiertas.

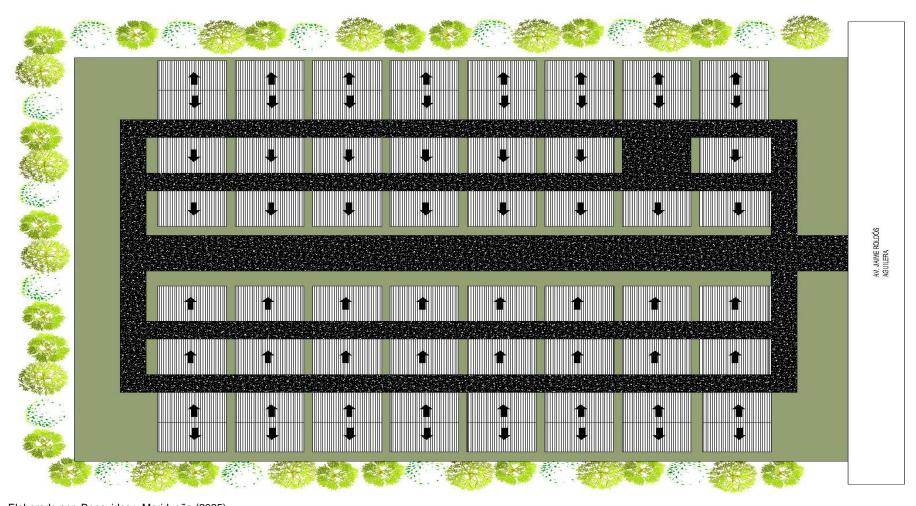


Ilustración 72: Implantación sanitaria.

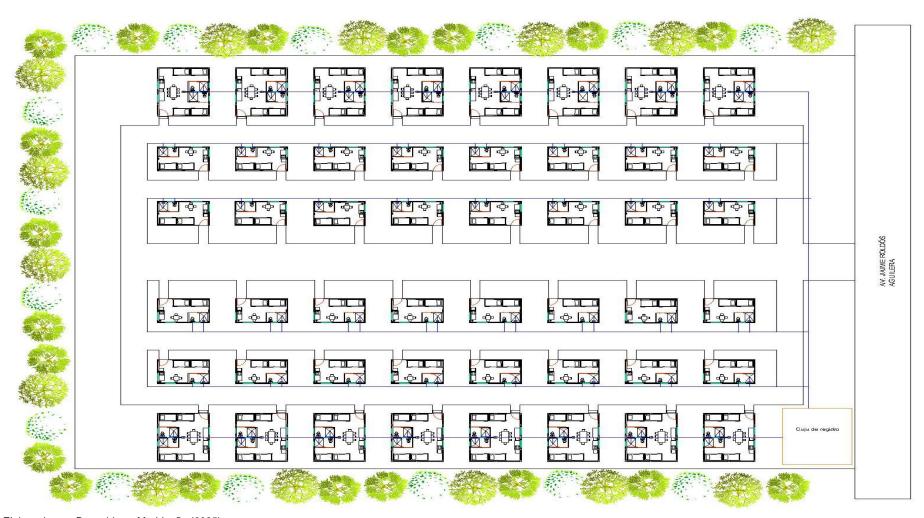
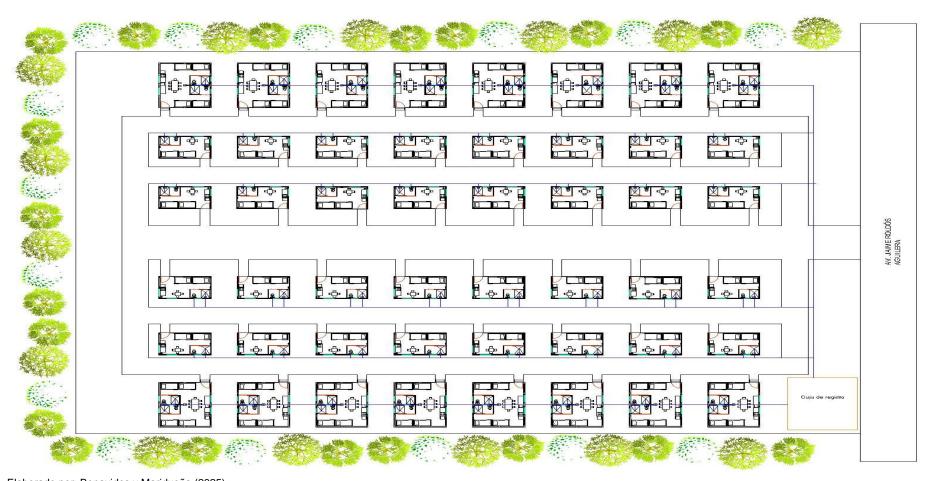



Ilustración 73: Implantación eléctrica.

4.7.1.3 Secciones

Ilustración 74: Corte ilustrados-Prototipo 1

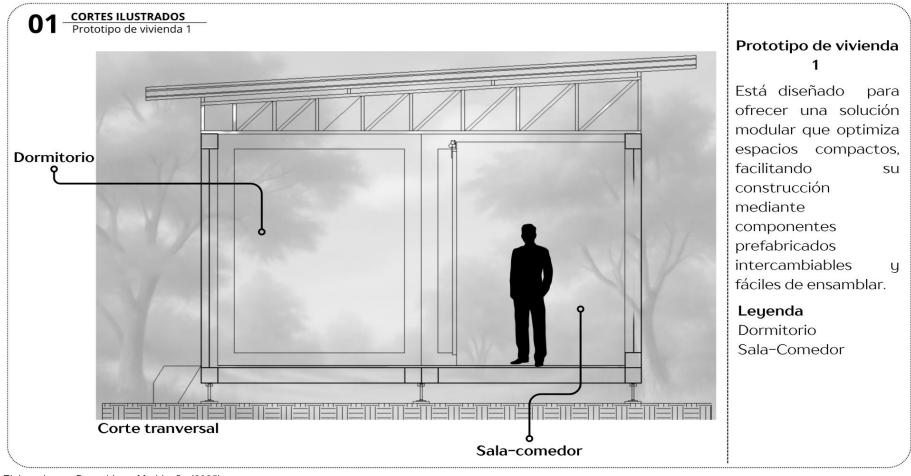


Ilustración 75: Cortes ilustrados-Prototipo 1

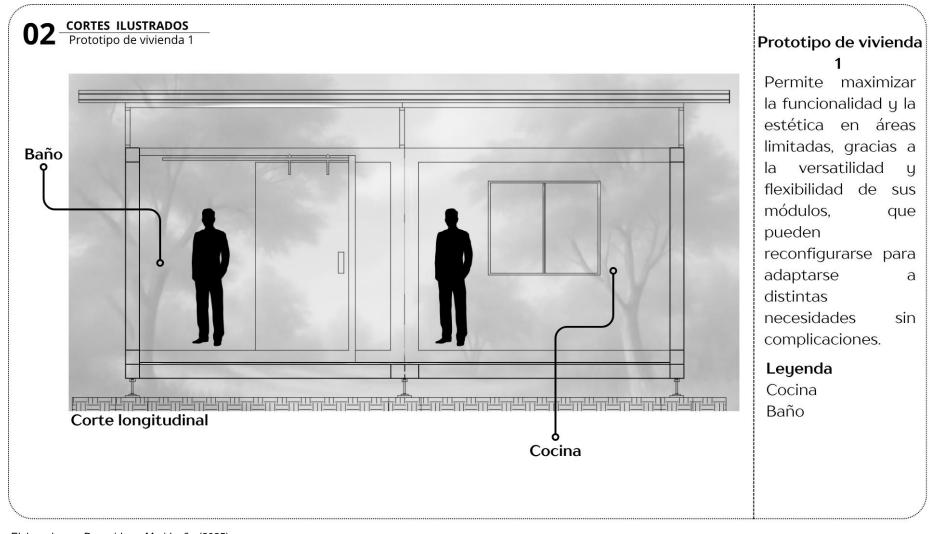


Ilustración 76: Cortes Ilustrados-Prototipo 2.

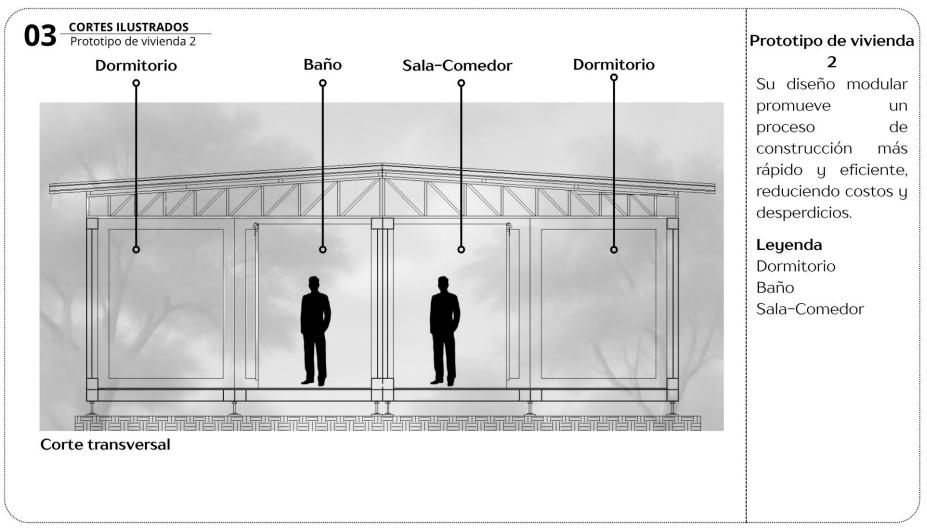
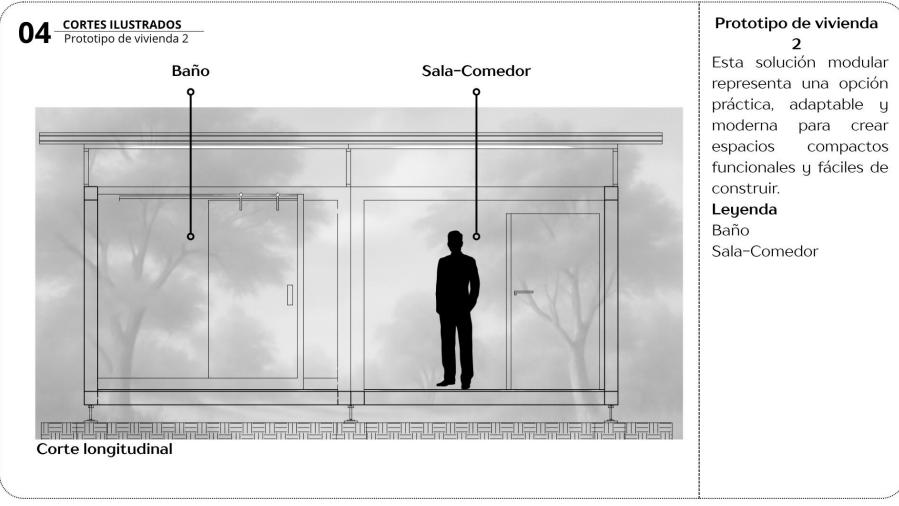



Ilustración 77:Cortes ilustrados-Prototipo 2.

4.7.2 Resultados Formales

4.7.2.1 Elevaciones.

Ilustración 78: Elevación prototipo 1.

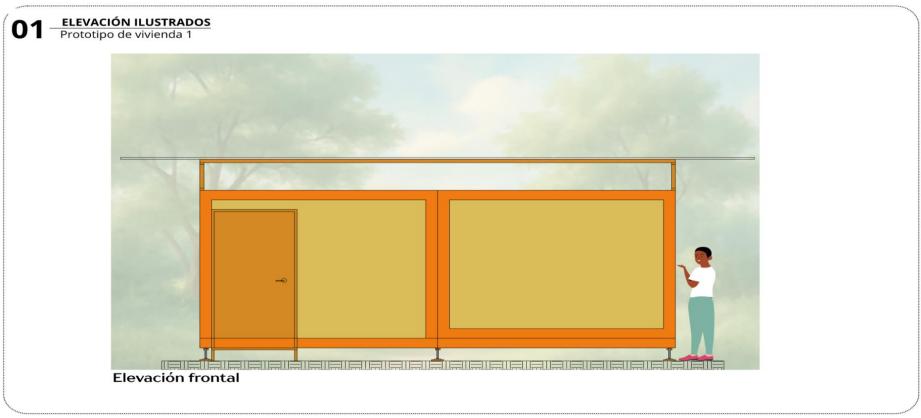
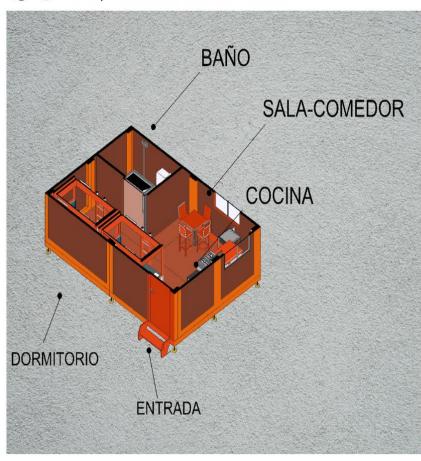


Ilustración 79: Elevación prototipo 1.

03 ELEVACIÓN ILUSTRADOS Prototipo de vivienda 1

04 ELEVACIÓN ILUSTRADOS Prototipo de vivienda 1



Elevación Lateral derecha

4.7.2.2 Axonometrías.

Ilustración 82: Axonometría-Prototipo 1.

Prototipo 1

Elaborado por: Benavides y Maridueña (2025).

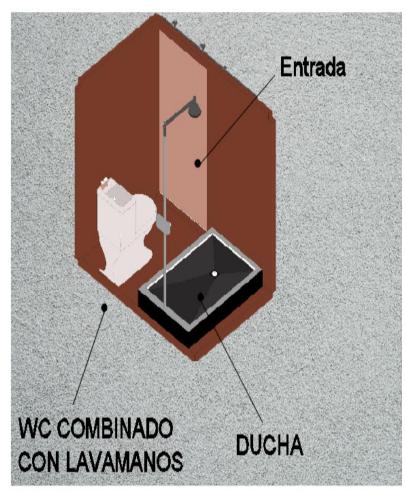

MATERIALES

MADERA TECA

La teca es una madera muy duradera y resistente al agua, al sol y a la humedad. Gracias a sus aceites naturales, no se pudre ni se deforma, siendo ideal para exteriores y ambientes húmedos sin necesidad de tratamiento adicional.

Q2 Axonometrias Prototipo 2

Elaborado por: Benavides y Maridueña (2025).


MATERIALES

MADERA TECA

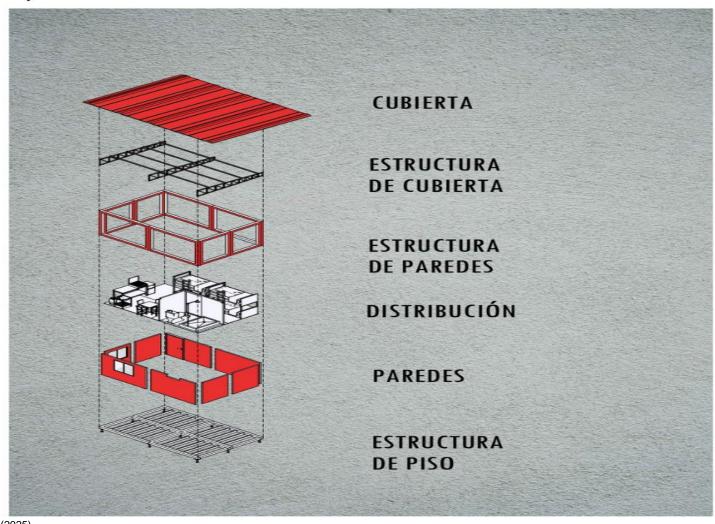
La teca es una madera muy duradera y resistente al agua, al sol y a la humedad. Gracias a sus aceites naturales, no se pudre ni se deforma, siendo ideal para exteriores y ambientes húmedos sin necesidad de tratamiento adicional.

13 Axonometrias Baño

Elaborado por: Benavides y Maridueña (2025).

MATERIALES

MADERA TECA


La teca es una madera muy duradera y resistente al agua, al sol y a la humedad. Gracias a sus aceites naturales, no se pudre ni se deforma, siendo ideal para exteriores y ambientes húmedos sin necesidad de tratamiento adicional.

WC COMBINADO

La teca es una madera muy duradera y resistente al agua, al sol y a la humedad. Gracias a sus aceites naturales, no se pudre ni se deforma, siendo ideal para exteriores y ambientes húmedos sin necesidad de tratamiento adicional.

O4 Axonometrias Prototipo 1

4.7.2.3 Vista exteriores.

Ilustración 86:Vistas exteriores.

01 Renders
Vistas Exteriores

Ilustración 87:Vista exteriores.

02 Renders Vistas Exteriores

Ilustración 88: Vistas exteriores.

03 Renders Vistas Exteriores

Elaborado por: Benavides y Maridueña (2025).

Ilustración 89:Vistas exteriores.

04 Renders Vistas Exteriores

Ilustración 90: Vistas exteriores.

05 Renders Vistas Exteriores

Elaborado por: Benavides y Maridueña (2025).

Ilustración 91:Vistas exteriores.

06 Renders Vistas Exteriores

4.7.2.4 Vistas interiores.

Ilustración 92:Vistas interiores.

01 Renders Vistas Interiores

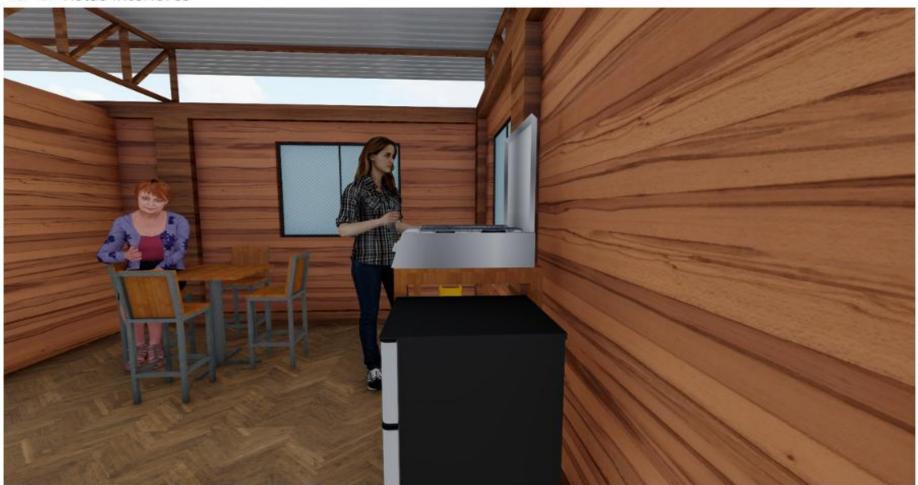
Ilustración 93:Vista interiores.

02 Renders Vistas Interiores

Ilustración 94:Vistas interiores.

03 Renders Vistas Interiores

Ilustración 95:Vista interiores.


04 Renders Vistas Interiores

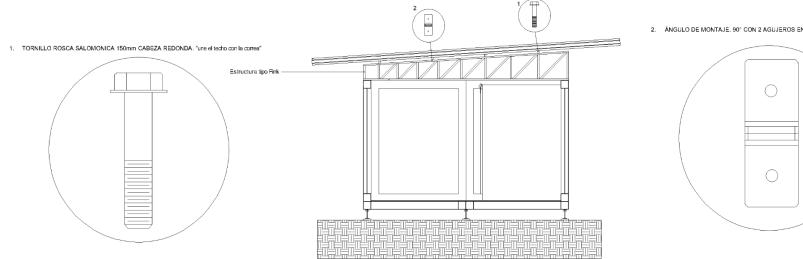
Elaborado por: Benavides y Maridueña (2025).

Ilustración 96:Vistas interiores.

05 Renders Vistas Interiores

Elaborado por: Benavides y Maridueña (2025).

Ilustración 97:Vistas interiores.

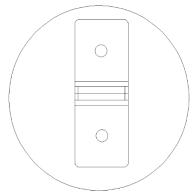
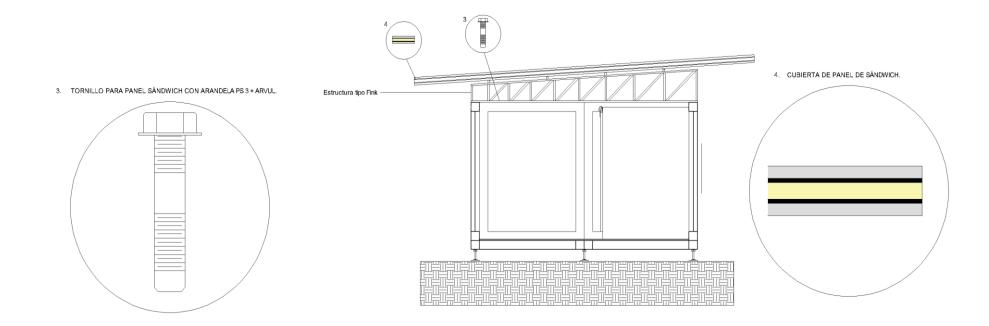
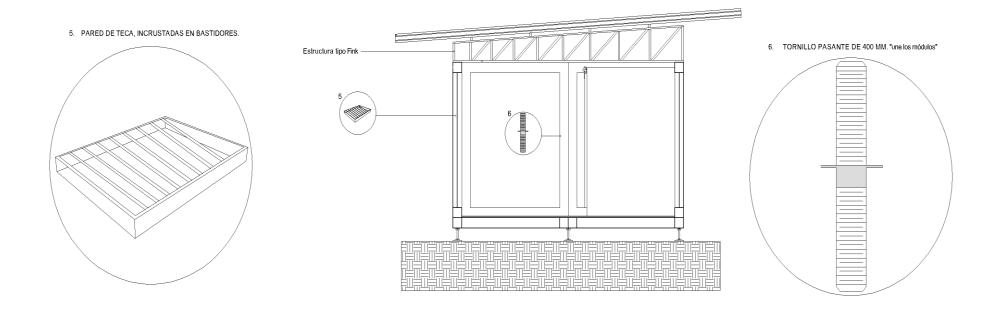
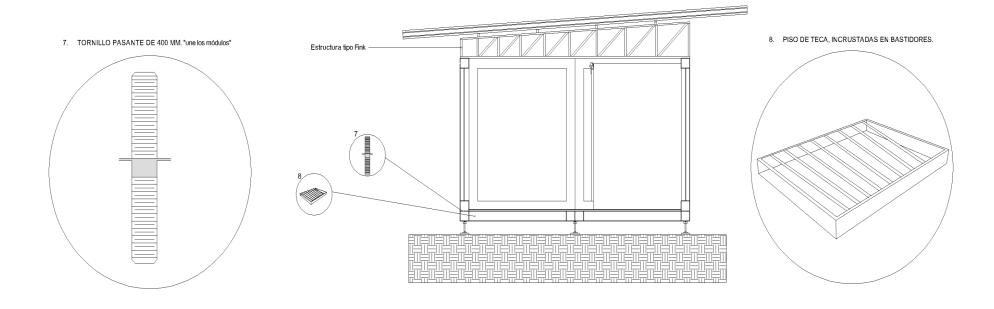

06 Renders Vistas Interiores

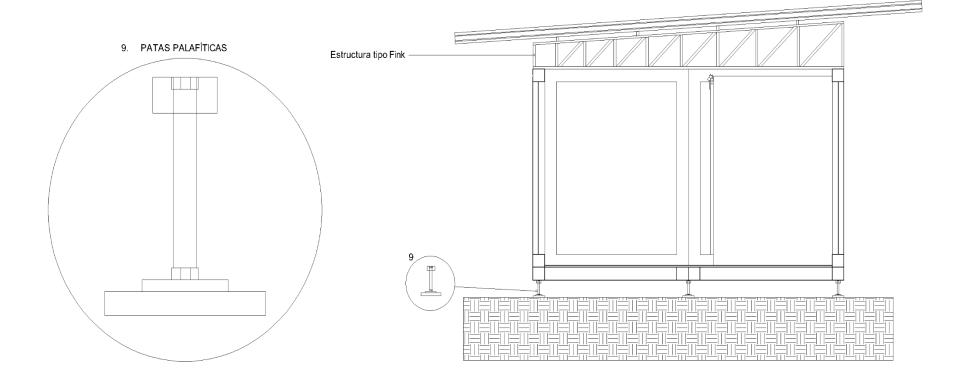
Elaborado por: Benavides y Maridueña (2025).

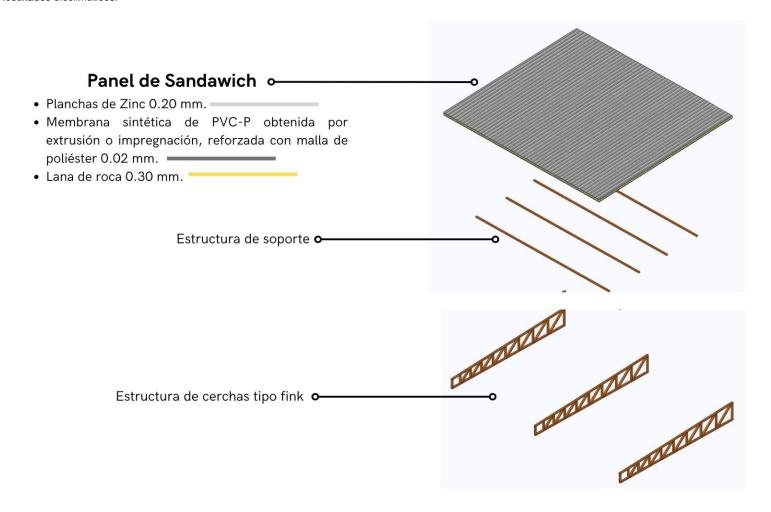
4.7.3 Resultados Estructurales-Constructivos

Ilustración 98:Detalles constructivos.

2. ÁNGULO DE MONTAJE, 90° CON 2 AGUJEROS EN L. "une la correa con la cercha"


Ilustración 99:Detalles constructivos.


Ilustración 101:Detalles constructivos

4.7.4 Resultados Bioclimáticos

Ilustración 103: Resultados bioclimáticos.

CAPÍTULO V- CUMBRE

5.1 Conclusiones

El proyecto de vivienda temporal emergente en General Villamil Playas constituye una propuesta innovadora y adaptable frente a fenómenos naturales, especialmente inundaciones. Su diseño modular y flexible permite una rápida instalación, proporcionando un refugio seguro y funcional para las familias afectadas. La incorporación de estrategias bioclimáticas, como techos tipo sándwich y estructuras elevadas, asegura confort térmico y resistencia ante el clima costero. Asimismo, la utilización de materiales locales y sostenibles contribuye a la reducción de costos y al menor impacto ambiental.

La investigación evidenció que este prototipo satisface efectivamente las necesidades urgentes de habitabilidad en situaciones de emergencia, combinando practicidad, durabilidad y versatilidad. Su concepto modular facilita la ampliación o reconfiguración conforme a las demandas específicas de los usuarios, posicionándolo como una alternativa viable para futuras aplicaciones en zonas vulnerables.

5.2 Recomendaciones

Se investigarán materiales que sean más resistentes a la humedad y a la presencia de salinidad, con un enfoque en opciones reciclables y económicas para optimizar el uso de los recursos. Asimismo, se diseñarán estrategias para la producción a gran escala de módulos, asegurando su rápida disponibilidad en situaciones de emergencia futuras. Además, se promoverán alianzas con organismos de gestión de riesgos y autoridades locales para incorporar este sistema dentro de los planes de respuesta ante desastres. Este proyecto no solo proporciona una solución inmediata, sino que también sienta las bases para futuras investigaciones en el campo de la arquitectura modular y resiliente, aportando a la reducción del riesgo en comunidades costeras vulnerables.

5.3 Bibliografías

- Vélez Del Hierro, C. A., Godoy Zúñiga, M. E., & Vélez Del Hierro, J. L. (17 de 05 de 2017). El Turismo Local en el Cantón. Obtenido de El Turismo Local en el Cantón: file:///C:/Users/Pc-Personal/Downloads/Dialnet-ElTurismoLocalEnElCantonGeneralVillamilPlayas-6252633.pdf
- Accecibilidad universal y diseño para todos. (28 de 06 de 2025). Obtenido de Accecibilidad universal y diseño para todos.
- Accesibilida universal(NEC). (04 de 2019). Obtenido de Accesibilida universal(NEC): https://www.habitatyvivienda.gob.ec/wp-content/uploads/downloads/2019/05/NEC-HS-AU-Accesibilidad-Universal.pdf
- Agraces Briones, A. F., & Peñaherrera Palma, S. M. (2024). *Diseño arquitectónico de un albergue temporal modular para jóvenes en situación de calle en el Sur de Guayaquil.*Obtenido de Repositorio Digital ULVR: http://repositorio.ulvr.edu.ec/handle/44000/7172
- Aranda Barajas, G. R. (2024). Análisis Geoespacial en la Arquitectura Bioclimática: Propuesta de análisis por sobreposición de capas para determinar Estrategias de Diseño Bioclimático. Obtenido de ResearchGate: https://www.researchgate.net/publication/390111695_ESTUDIOS_DE_ARQUITECTU RA BIOCLIMATICA XIX
- Arias Monyota, G. E. (2022). *Diseño arquitectónico de una vivienda unifamiliar con un sistema constructivo Walltech.* Obtenido de Repositorio ULVR: http://repositorio.ulvr.edu.ec/handle/44000/5788
- Arriaga Rodriguez, A. C. (2024). Arquitectura bioclimática en el diseño de espacios de educación primaria para la ciudad de Otuzco- La Libertad 2023. Obtenido de Repositorio de la Universidad César Vallejo: https://hdl.handle.net/20.500.12692/156096
- Cabral Vasquez Del Mercado, L. E. (2022). *DISEÑO DE CONEXIONES METÁLICAS GENÉRICAS DE UNA VIVIENDA PREFABRICADA, MODULAR Y DESMONTABLE*. Obtenido de Repositorio Institucional DGBSDI-UAQ: http://ri-ng.uaq.mx/handle/123456789/3145
- Castro Boschini, L. G. (09 de 2024). *Propuesta de intervención bioclimática en el Edificio Cronos para obtener la certificación ambiental EDGE©*. Obtenido de Repositorio TEC: https://repositoriotec.tec.ac.cr/handle/2238/15636
- Ching, F. (28 de 06 de 2025). *Arquitectura, forma, espacio*. Obtenido de Arquitectura, forma, espacio: https://es.scribd.com/document/628383606/Arquitectura-Francis-Ching

- Cruz León, E. E. (2022). Arquitectura progresiva para el diseño de viviendas comunitarias enfocada en tipologías de estilo americano. Obtenido de Repositorio ULVR: http://repositorio.ulvr.edu.ec/handle/44000/5843
- Duré Ruiz Díaz, S. F. (2021). Aportes al diseño de espacios energéticamente eficientes en edificios existentes. Reciclando el edificio de Postgrado de la Universidad Americana conforme parámetros físicos bioclimáticos. Obtenido de CONSEJO NACIONAL DE CIENCIA Y TECNOLOGÍA PARAGUAY: http://hdl.handle.net/20.500.14066/3500
- El comercio. (2023 de 02 de 2023). Obtenido de El comercio: https://www.elcomercio.com/actualidad/ecuador/inundaciones-villamil-playasdamnificados-guayas.html
- Herrera Limones, R. (2023). Jaime López de Asiaín: del Seminario de Arquitectura Bioclimática al Equipo Solar Decathlon de la Universidad de Sevilla... a través de una maestría cordial. *Hábitat Y Sociedad, 16*(16), 321-325. doi:https://doi.org/10.12795/HabitatySociedad.2023.i16.15
- Magaña Herrera, P., & Ramírez Vargas, D. L. (05 de Agosto de 2024). *El sistema tendinoso y la evolución de su tecnología constructiva: una revisión*. Obtenido de Multi-Lingual Scientific (MLS) Journals: https://doi.org/10.35992/pdm.v6i2.2689
- Mayén, C. (28 de 08 de 2020). *ARQ*. Obtenido de ARQ: https://www.jgarqs.com/blog/2020/8/28/arquitectura-modular
- Ministerio de gobierno. (23 de 04 de 2025). Obtenido de Ministerio de gobierno : https://www.ministeriodegobierno.gob.ec/entidades-gubernamentales-participan-de-ejercicio-estrategico-ante-posibles-desastres-naturales/
- Morales Martinez, Y. V. (10 de noviembre de 2023). *Propuesta de una arquitectura de referencia académica para la enseñanza de DevOps.* Obtenido de Repositorio Institucional del Tecnológico Nacional de México (RI-TecNM): https://rinacional.tecnm.mx/jspui/handle/TecNM/6576
- Morales Ojeda, B. (01 de 05 de 2024). *DISEÑO BIOCLIMÁTICO DE UNA VIVIENDA EN SANTA ROSA DE LIMA, OAX.* Obtenido de Repositorio Institucional del Tecnológico Nacional de México (RI-TecNM): https://rinacional.tecnm.mx/jspui/handle/TecNM/8850
- Muñoz Mínguez, L. (2015). *Arquitectura de emergencia. Prototipos contemporáneos efímeros.*Obtenido de Universidad de Valladolid: http://uvadoc.uva.es/handle/10324/14062
- Naranjo Abarca, J. C. (2021). Aplicación de escenarios en la evaluación de un estudio de caso, por medio de materiales y componentes constructivos sostenibles. Obtenido de Kérwá: https://hdl.handle.net/10669/86636

- Nieto Barbosa, V., Cubillos Gonzalez, R., & Barrios Salcedo, R. (2021). Aspectos de diseño resiliente aplicados a la envolvente que determinan el confort térmico en las viviendas sociales. *Revista ingeniería de construcción, 36*(2), 197-209. doi:http://dx.doi.org/10.4067/S0718-50732021000200197
- Ordenanza Municipsl de Guayaquil . (20 de 06 de 2025). Obtenido de Ordenanza Municipsl de Guayaquil : https://www.guayaquil.gob.ec/wp-content/uploads/2021/10/13-7-2000.-Ordenanza-sustitutiva-de-edificaciones-y-construcciones-del-Canton-Guayaquil.pdf
- Palero, J. S. (2023). El diseño participativo desde la perspectiva del diseño. *Cuadernos Del Centro De Estudios De Diseño Y Comunicación*(195). doi:https://doi.org/10.18682/cdc.vi195.9641
- Prefectura ciudadana del Guayas. (20 de 06 de 2025). Obtenido de Prefectura ciudadana del Guayas: https://guayas.gob.ec/60-es-el-avance-en-la-reconstruccion-de-la-via-playas-engabao/
- Ramos Sánchez, J. A. (1 de octubre de 2024). *Análisis y diseño estructural de un puente modular con conexiones de rápido ensamble para caminos de acceso en la industria petrolera.* Obtenido de Universidad Juárez Autónoma de Tabasco: https://ri.ujat.mx/handle/200.500.12107/5177
- Rivas Jiménez, C. J. (2021). La sustentabilidad en el proceso de diseño arquitectónico, enfoque desde el pensamiento complejo. Obtenido de Repositorio Institucional de la UNAM: https://hdl.handle.net/20.500.14330/TES01000810987
- Rodriguez Silva, P. L. (2023). Arquitectura modular en el diseño urbano de la comunidad indígena Shipibo Konibo de Cantagallo Lima 2023. Obtenido de Repositorio de la Universidad Césa Vallejo: https://repositorio.ucv.edu.pe/handle/20.500.12692/131930
- Saltos Bajaña, A. V. (2024). *DISEÑO ARQUITECTÓNICO DE UN PROTOTIPO MODULAR DE.*Obtenido de Repositorio Digital ULVR: http://repositorio.ulvr.edu.ec/handle/44000/7286
- Solano Rojo, M. (2024). *Hexacube, utopía de plástico. Del hábitat turístico prefabricado y modular a la "casa evolutiva" itinerante.* Obtenido de Universidad de Granada: https://hdl.handle.net/10481/99607
- Soria Noroña, L. C., & Vásquez Vanegas, N. Y. (2025). Impacto del Cambio Climático mediante la variabilidad de la precipitación y temperatura en el Cantón Lago Agrio. *Ciencia Latina Revista Científica Multidisciplinar, 9*(1), 2380. doi:https://doi.org/10.37811/cl rcm.v9i1.16014

- Stanford-Manjarrés, C. A. (2023). El paisaje como elemento clave en la arquitectura bioclimática y sostenible en Montería. *Revista de Arquitectura (Bogotá), 25*(1), 113-126. doi:https://doi.org/10.14718/revarq.2023.25.3070
- Tomasi, J., & Barada, J. (2023). Más allá (y más acá) de un patio. *Anales del Instituto de Arte Americano e Investigaciones Estéticas. Mario J. Buschiazzo, 53*(1), 9. Obtenido de https://www.scielo.org.ar/scielo.php?pid=S2362-20242023000100009&script=sci_abstract&tlng=en
- Tovar Villamil, S. H. (2022). *Prototipo de vivienda modular rural en madera, ambientalmente sostenible, utilizando maderas pioneras colombianas.* Obtenido de Universidad Nacional de Colombia: https://repositorio.unal.edu.co/handle/unal/82157
- Vera Torres, E. I. (febrero de 2019). *La modularidad aplicada a un modelo de vivienda emergente*. Obtenido de Universidad Técnica de Ambato: http://repositorio.uta.edu.ec/handle/123456789/29399
- Villacís Acosta, F. J. (2023). *Diseño urbano táctico como instrumento placemaking en la Av. Samuel Cisneros en el cantón Durán.* Obtenido de Repositorio ULVR: http://repositorio.ulvr.edu.ec/handle/44000/6198
- WINDFINDER. (23 de 06 de 2025). Obtenido de WINFINDER: https://es.windfinder.com/forecast/playas_guayas_ecuador

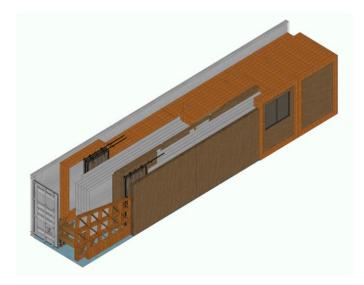
5.4 Anexos

Anexos 1:Ficha técnica.

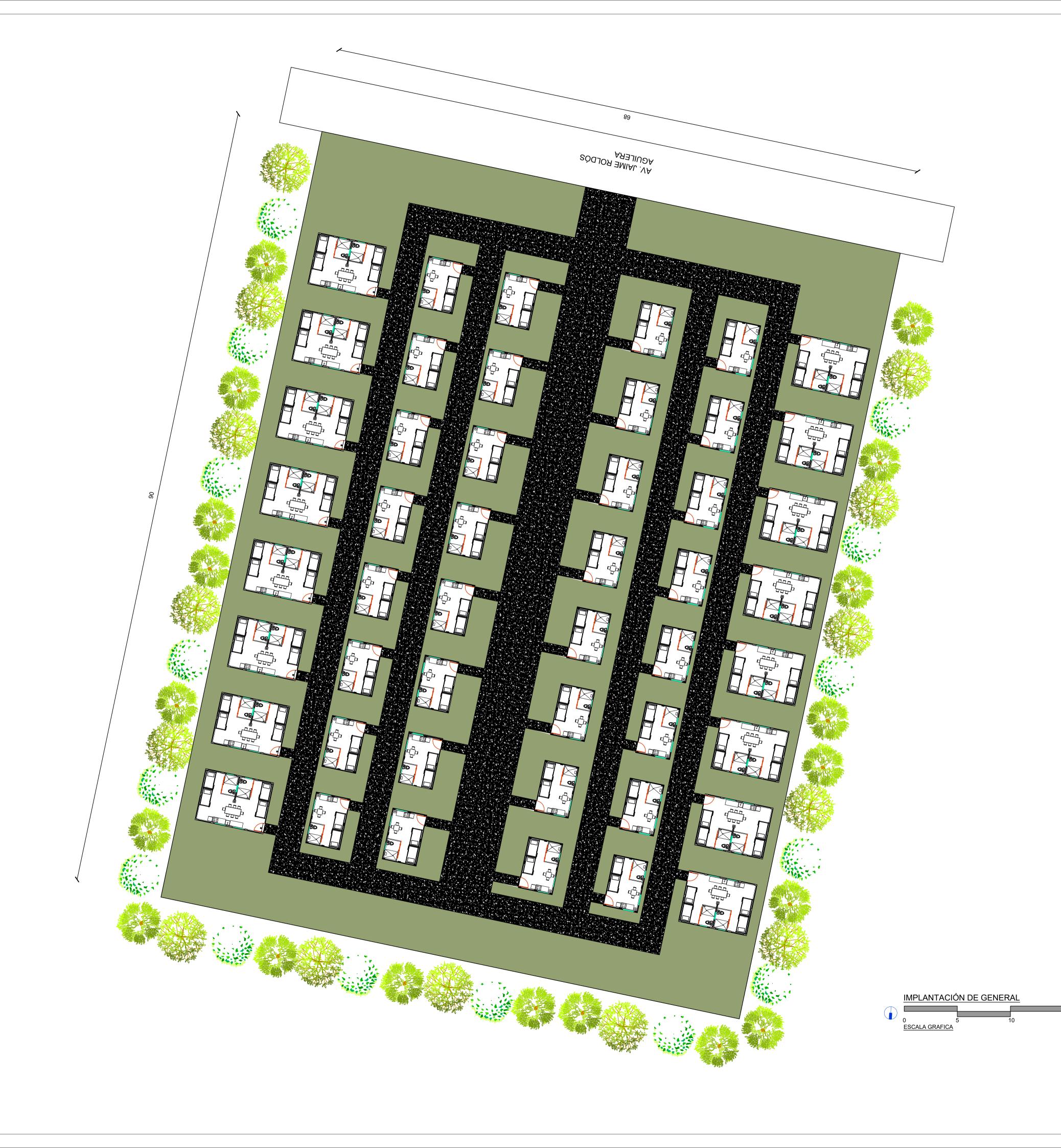
PRODUCTO	DESCRIPCIÓN	FOTOGRAFÍA
MADERA TECA "PAREDES, PISOS CORREAS,	MÓDULO DE RUPTURA (MOR) SECA: 951,25 KG/ CM² MÓDULO DE ELASTICIDAD (MOE) *1000 SECA: 131,5 KG/CM².	
CERCHAS, PUERTAS Y ESCALERA".	DURABILIDAD: ALTAMENTE RESISTENTE.	
	COLOR: ALBURA ES DE COLOR AMARILLO CLARO Y EL DURAMEN PRESENTA TONOS MARRONES Y DORADOS.	
PRODUCTO	DESCRIPCIÓN	FOTOGRAFÍA
PERNO PASANTE	TORNINO DIAMETRO 8MM LARGO 400MM + TUERCA + CAMISA.	
400MM	TORNILLOS DE ACERO INOXIDABLE 4 ENTRADAS + TUERCA DE BRONCE + CAMISA.	
	COLOR GRIS PLATEADO.	B
PRODUCTO	DESCRIPCIÓN	FOTOGRAFÍA
PANEL DE CUBIERTA DE SÁNDWICH	PANEL AISLADO TIPO SÁNDWICH PARA FACHADA, CON CARAS DE ACERO Y UN NÚCLEO DE LANA DE DE ROCA RECUBIERTA POR UNA MEMBRANA DE SINTETICA DE PVC-P. BAJO PESO QUE PERMITE MAYOR FACILIDAD DE TRANSPORTE Y RAPIDEZ EN LA INSTALACIÓN. COLOR GRIS PLATEADO.	

PRODUCTO	DESCRIPCIÓN	FOTOGRAFÍA
SISTEMA PARA PUERTA CORREDIZA DE MADERA DESIGN	PARA PESO DE HOJA DE PUERTA DE HASTA 100 KG.	
100-V.	SUJECIÓN POR ENGANCHE, CON MECANISMO DE TRASLACIÓN CON SEGURO DE DESENGANCHE.	8
	COLOR GRIS PLATEADO.	
PRODUCTO	DESCRIPCIÓN	FOTOGRAFÍA
TORNILLO PARA PANEL SÁNDWICH CON ARANDELA PS	ES AUTOTALADRANTE, DE CABEZA HEXAGONAL E INCORPORA UNA ARANDELA ESTAMPADA. PERMITE FIJAR LOS PANELES SOBRE CORREAS EN CUBIERTAS O CERRAMIENTOS.	
3 + ARVUL	LA ARANDELA VULCANIZADA DE EPDM PERMITE CONSEGUIR UNIONES ESTANCAS.	
	COLOR GRIS PLATEADO.	
PRODUCTO	DESCRIPCIÓN	FOTOGRAFÍA
PERNOS PASANTES DE ANCLAJE DE EXPANSIÓN TIPO CUÑA DE ALTA	ANCLAJE DE CUÑA DE ACERO INOXIDABLE.	
RESISTENCIA PERNO DE ANCLAJE 200 MM	ISO/DIN/ANSI/ASME/ASTM/BS/AS/JIS.	
	COLOR GRIS PLATEADO.	

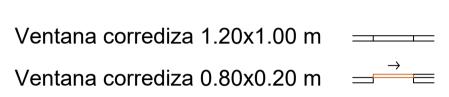
PRODUCTO	DESCRIPCIÓN	FOTOGRAFÍA
ESTRUCTURA DE LOS SISTEMAS DE ALUMINIO. "MARCO DE LA VENTANA"	ESTÁN CONFORMADOS POR PERFILES QUE APORTAN RIGIDEZ Y ESTABILIDAD DIMENSIONAL. LA ESTRUCTURA INCORPORA MARCOS Y HOJAS ENSAMBLADOS MEDIANTE UNIONES MECÁNICAS, CON CANALES DISEÑADOS PARA ALOJAR BURLETES, ACCESORIOS DE CIERRE Y HERRAJES. COLOR GRIS PLATEADO.	
PRODUCTO	DESCRIPCIÓN	FOTOGRAFÍA
VIDRIO LAMINADO	ES UN VIDRIO DE SEGURIDAD, COMPUESTO POR DOS HOJAS DE VIDRIO FLOTADO, UNIDAS ENTRE SÍ POR UNA INTERLÁMINA DE POLIVINIL BUTIRAL (PVB). ESPESORES DE VIDRIO: 68 MM.	POLIVINIL BUTIRAL (PVB)
	FILTRA HASTA EL 99% DE LOS RAYOS U. V .	
PRODUCTO	DESCRIPCIÓN	FOTOGRAFÍA
VARILLA ROSCA 1/2- 13 3MT G2	PERNO HEX/TCA 1/2X6 G2 GALV UNC(5KG 28).	
GALVANIZAD A	VARILLA ROSC 1/2-13 3MT.G2 GALV. COLOR GIS PLATEADO.	


PRODUCTO	DESCRIPCIÓN	FOTOGRAFÍA
TUERCA HEXAGONAL 1/2 G2 GALVANIZADA UNC 5KG	TUERCA HEXAGONAL 1/2 G2 GALV.UNC(5KG)	
	TAMAÑO 1/2.	
	COLOR GRIS PLATEADO.	

Anexos 2: Presupuesto.


CANTIDAD	RUBRO	VALOR
1	Tablero Alistonado - Teca - Espesor 18 mm - Cara B	\$174.69
1	Perno pasante 400mm	\$17.99
1	Panel de cubierta de sándwich	\$60.00
1	Sistema para puerta corrediza de madera Design 100-V.	\$25.50
1	Tornillo para panel sándwich con arandela PS 3 + ARVUL	\$0.45
1	Pernos pasantes de anclaje de expansión tipo cuña de alta resistencia Perno de anclaje 200 mm	\$0.48
1	Estructura de los sistemas de aluminio. "marco de la ventana"	\$75.00
1	VIDRIO LAMINADO 8mm por m2	\$60.00
1	Varilla Rosca 1/2-13 3mt G2 Galvanizada	\$6.67
1	Tuerca Hexagonal 1/2 G2 Galvanizada UNC 5kg	\$4.59

Sistema de viviendas modulares transportables que permite almacenar y trasladar hasta tres unidades completas dentro de un contenedor de 40 pies. Diseñado para un montaje rápido y eficiente en destino, ofrece una solución práctica y adaptable para diversos contextos habitacionales.


Anexos 4: Planos arquitectónico

1. VIVIENDA UNIFAMILIAR

2. VIVIENDA MULTIFAMILIAR

Puerta abatible de madera Puerta corrediza de madera

- 1. VIVIENDA UNIFAMILIAR
- 2. VIVIENDA MULTIFAMILIAR

CUBIERTA

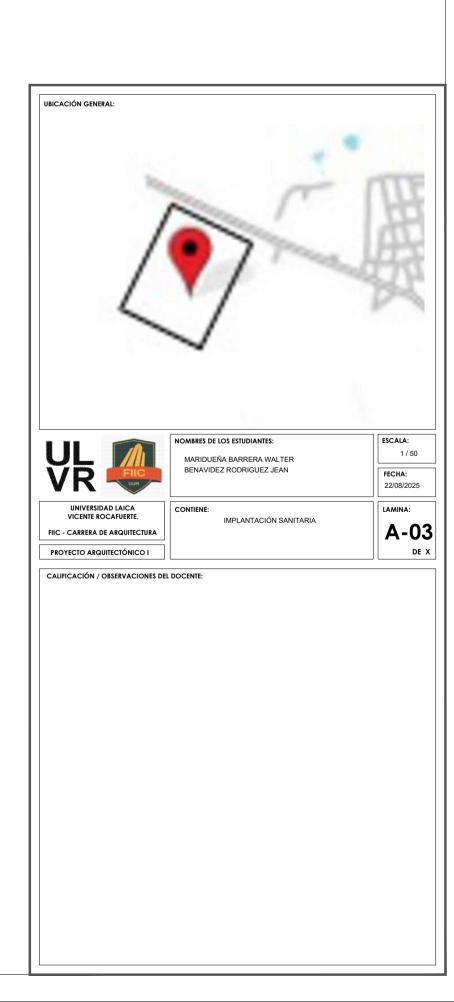
Panel Sandwich

Cerchas de madera

Tornillo de rosca salomónica

Ángulo de montaje de 90°

Tornillo para panel sandwich arandela PS 3+Arvul



1. VIVIENDA UNIFAMILIAR

2. VIVIENDA MULTIFAMILIAR

Tuberías

1. VIVIENDA UNIFAMILIAR

BOMBILLO

TOMACORRIENTE

 \preceq

Д

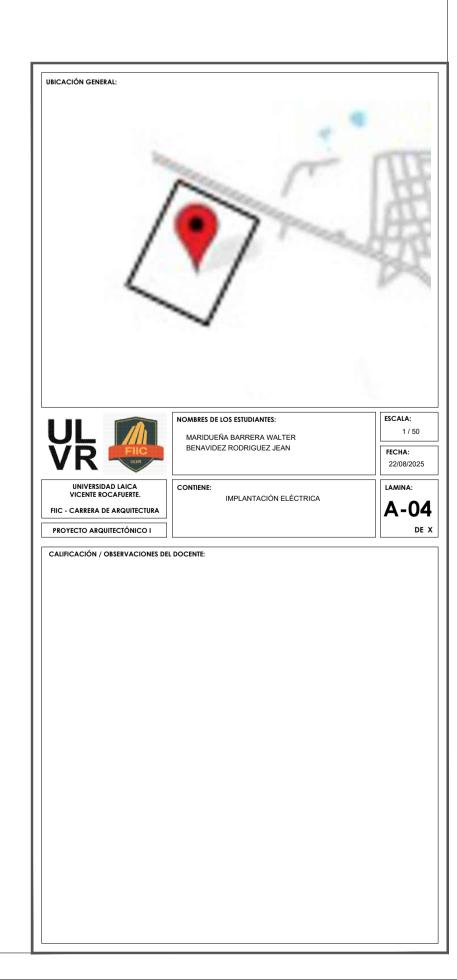
Д

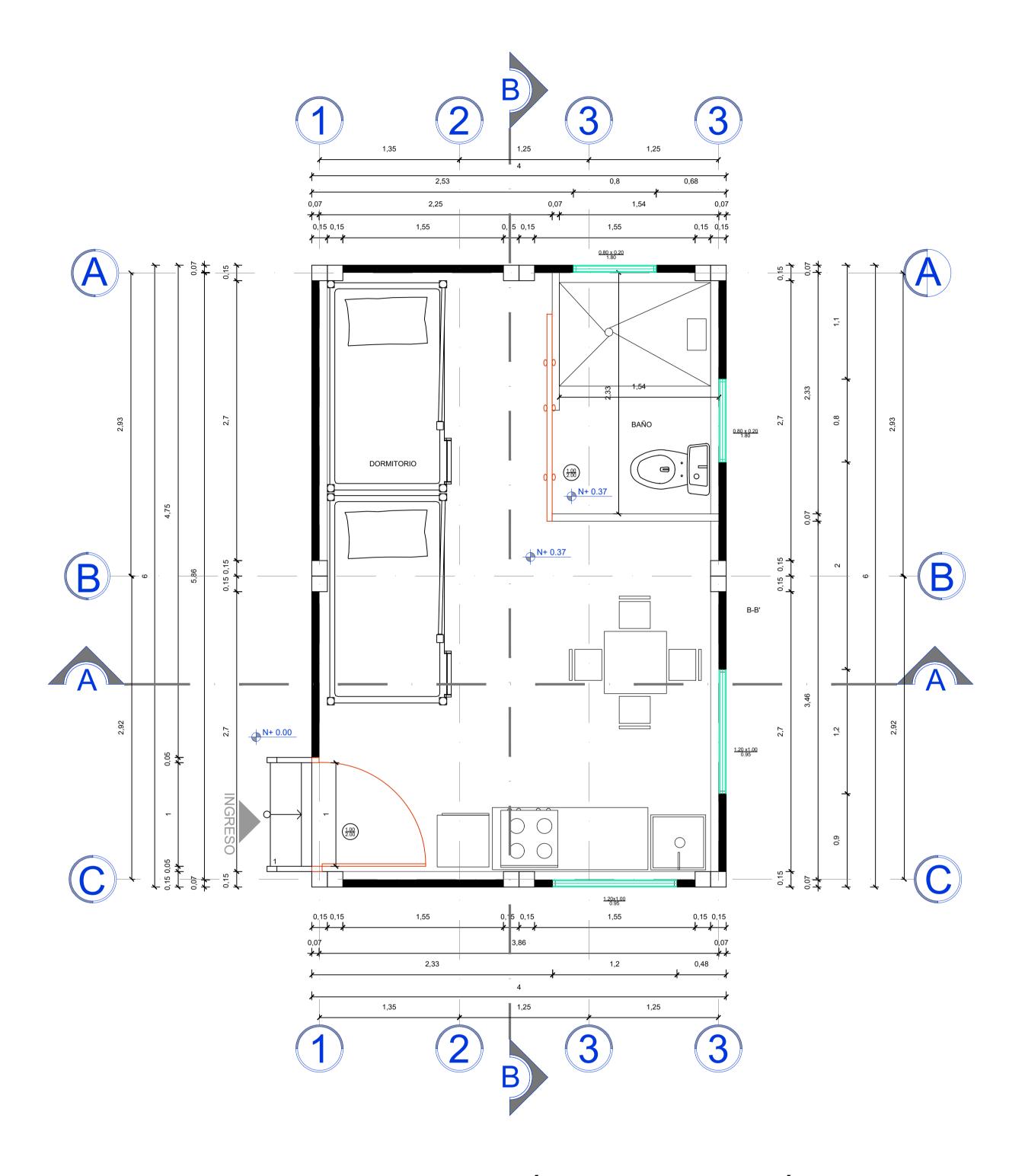
INTERRUPTOR

3 BOMBILLOS

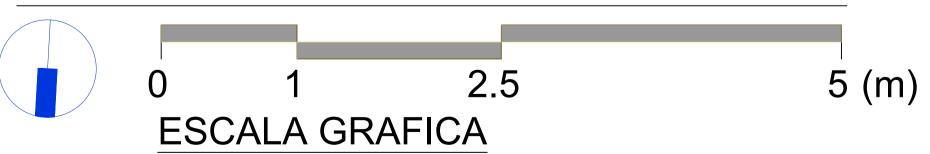
7 TOMACORRIENTES

3 INTERRUPTORES


2. VIVIENDA MULTIFAMILIAR


BOMBILLO

TOMACORRIENTE \(\times\)

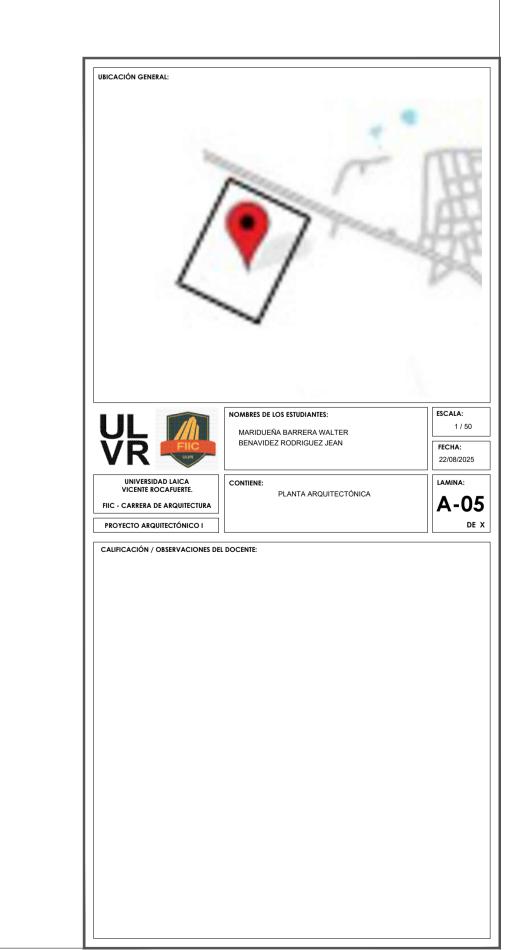

INTERRUPTOR

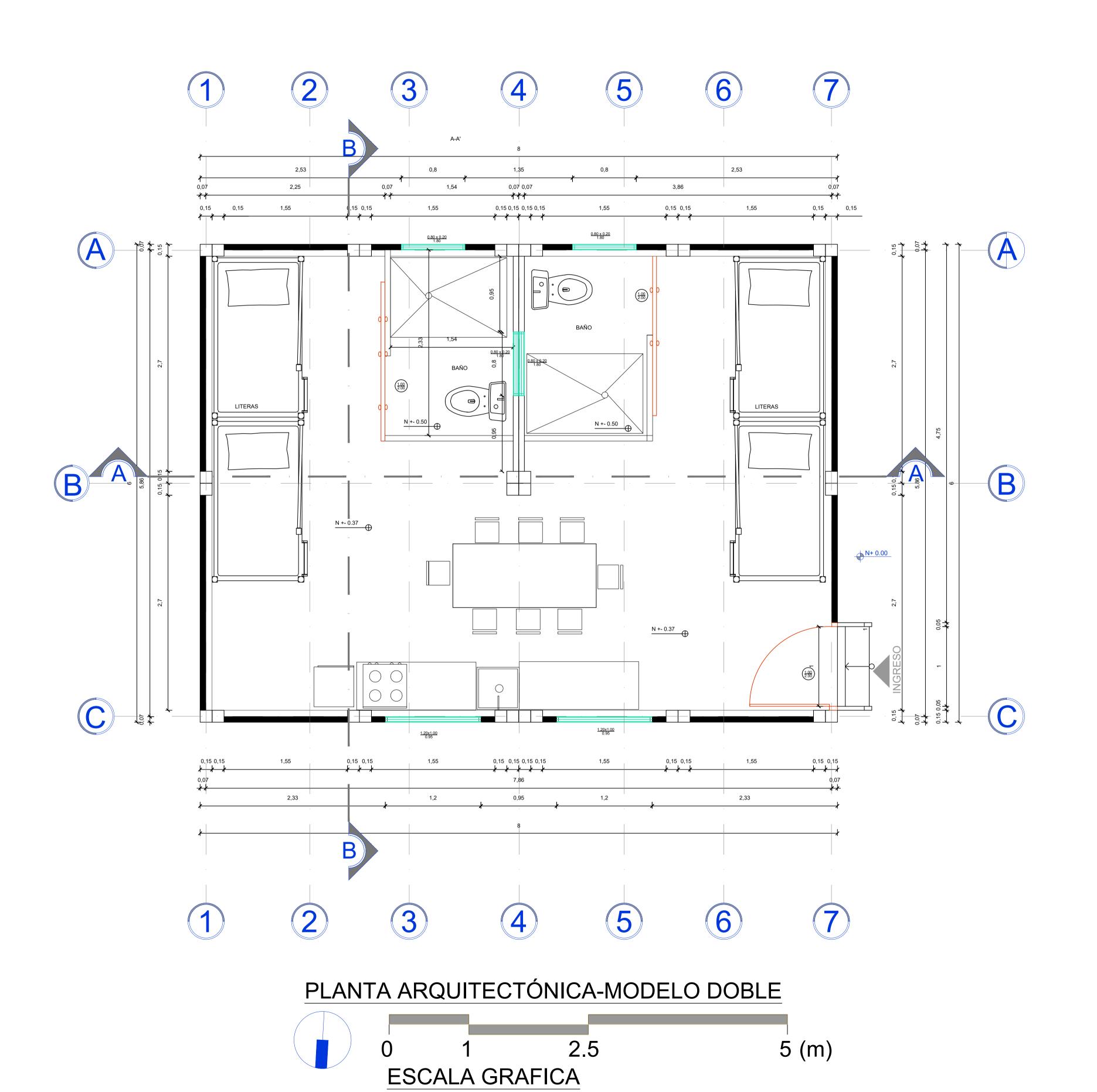
4 BOMBILLOS10 TOMACORRIENTES4 TOMACORRIENTE

PLANTA ARQUITECTÓNICA-MODELO BÁSICO

LEYENDA

VIVIENDA UNIFAMILIAR PARA 4 PERSONAS


Sala/comedor

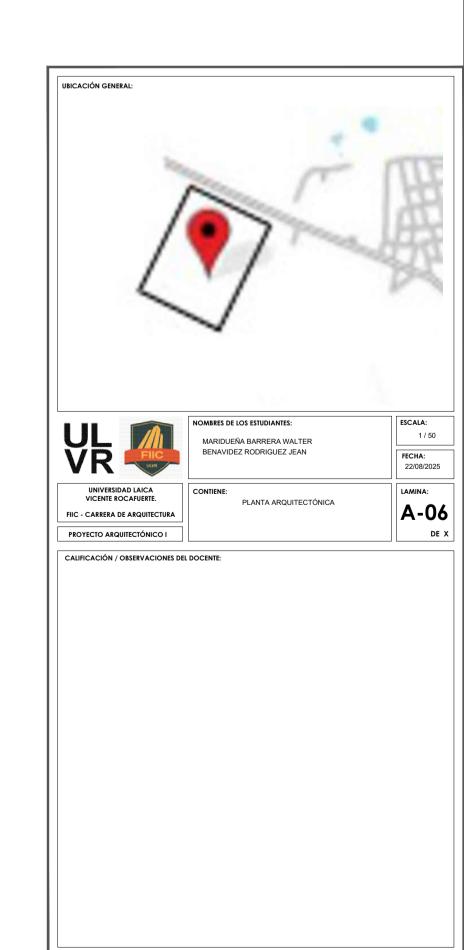

Cocina

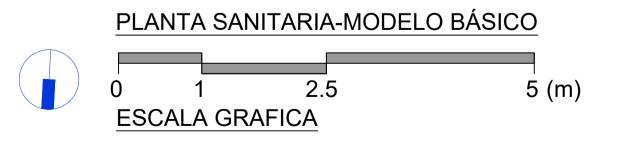
Literas

Baño

Vivienda de tipo Unifamiliar, que está diseñada para dar alojo temporal a una familia de 4 personas

VIVIENDA MULTIFAMILIAR PARA 8 PERSONAS


Sala/comedor


Cocina

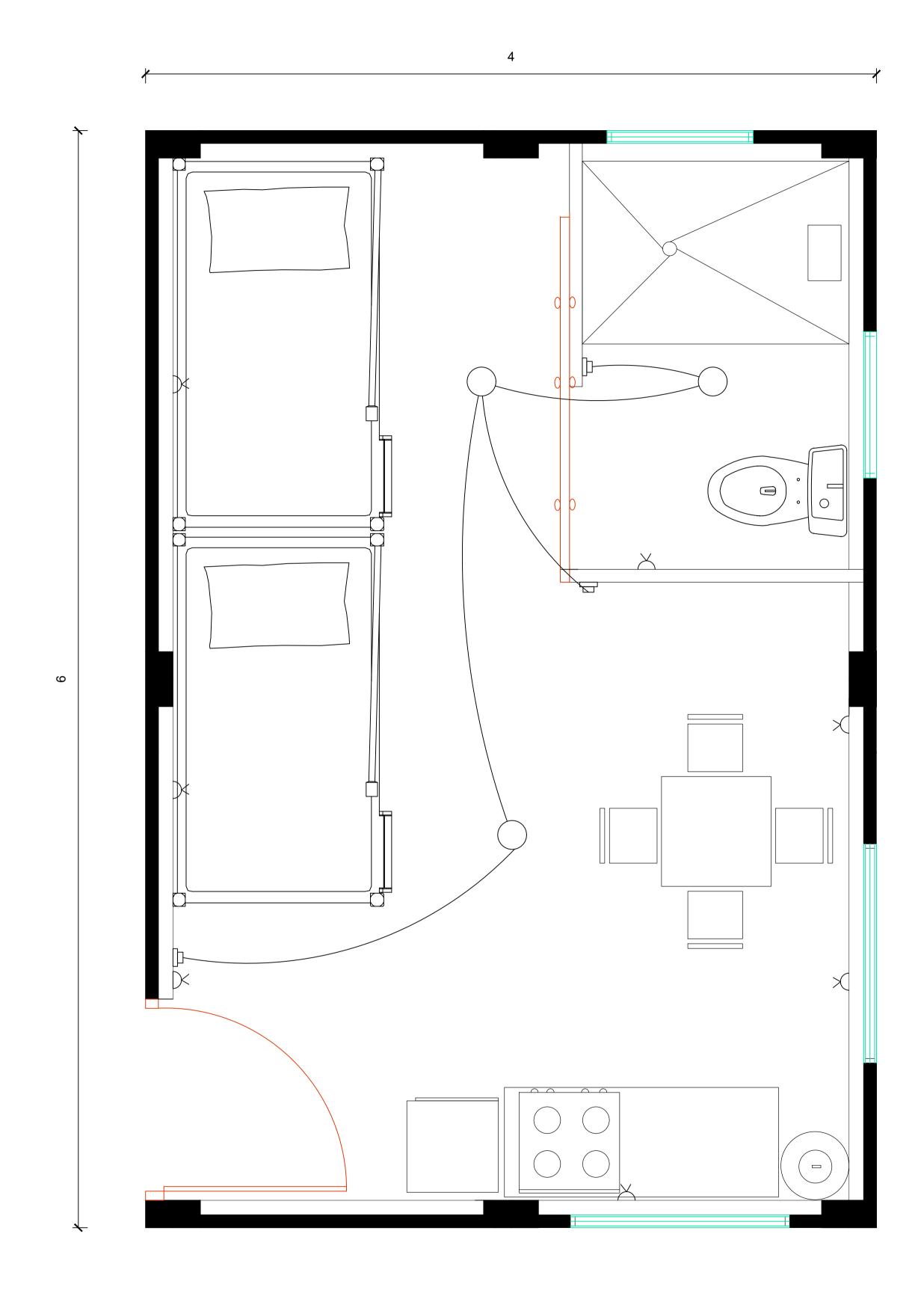
Literas

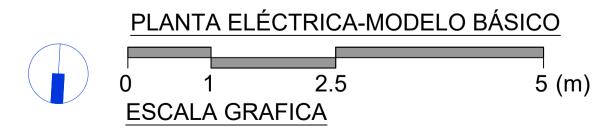
Baño

Vivienda de tipo multifamiliar, que está diseñada para dar alojo temporal a una familia de 8 personas.

1. VIVIENDA UNIFAMILIAR

Tuberías


PLANTA SANITARIA-MODELO DOBLE 0 1 2.5 5 (m) ESCALA GRAFICA


LEYENDA

1. VIVIENDA MULTIFAMILIAR

Tuberías

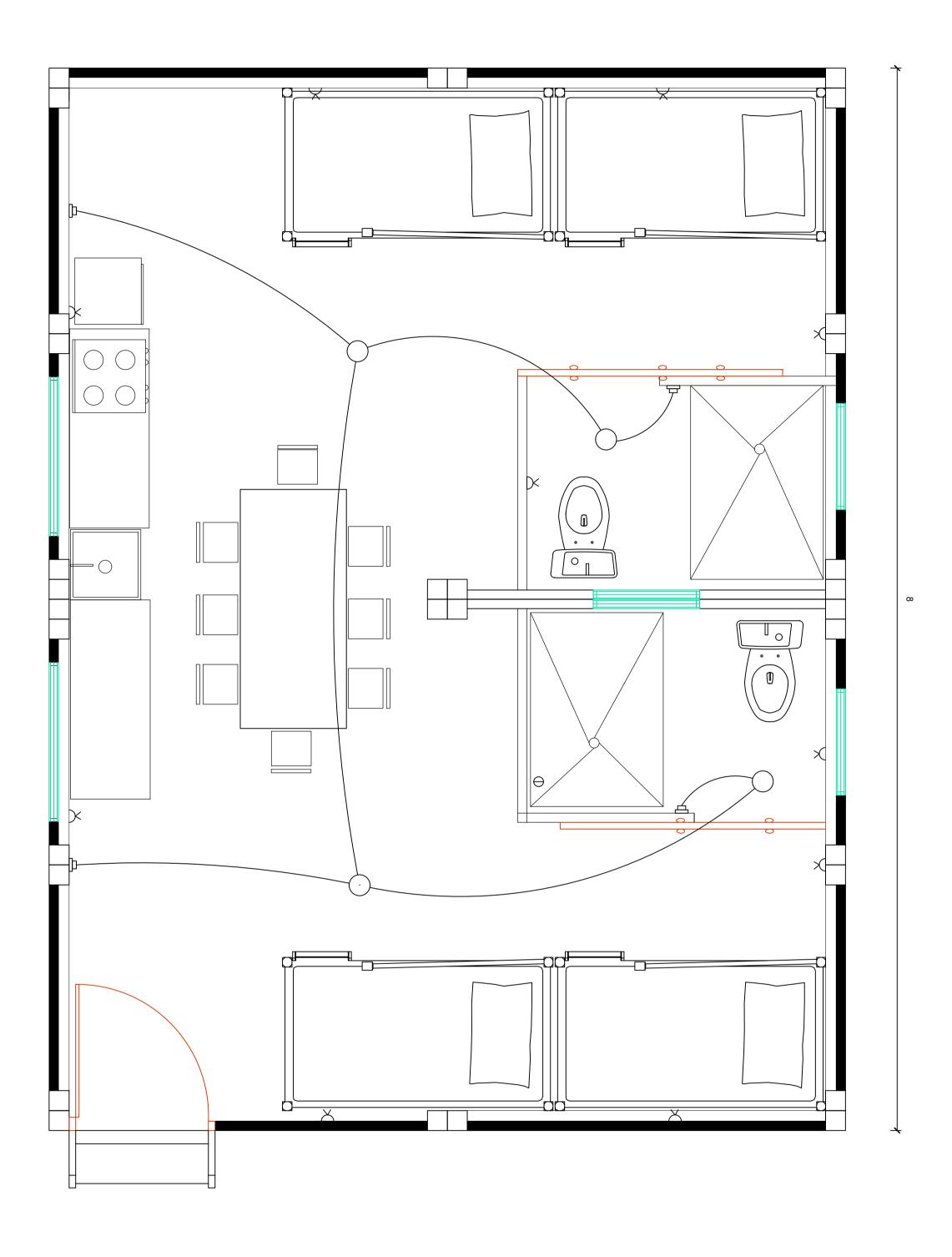
 \succeq

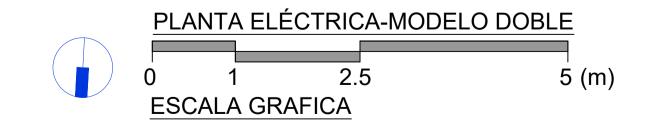
Д

1. VIVIENDA UNIFAMILIAR

BOMBILLO

TOMACORRIENTE


INTERRUPTOR


3 BOMBILLOS

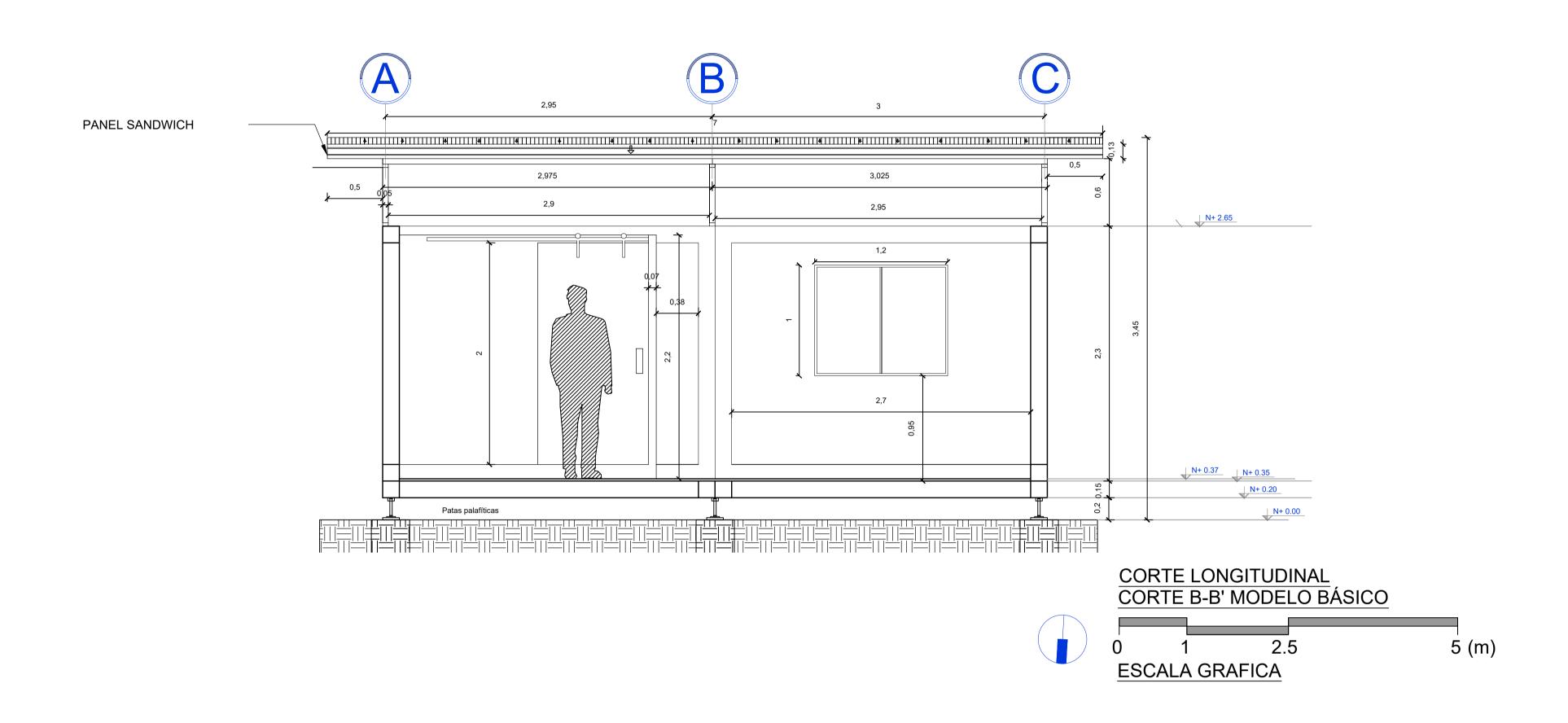
TOMACORRIENTES

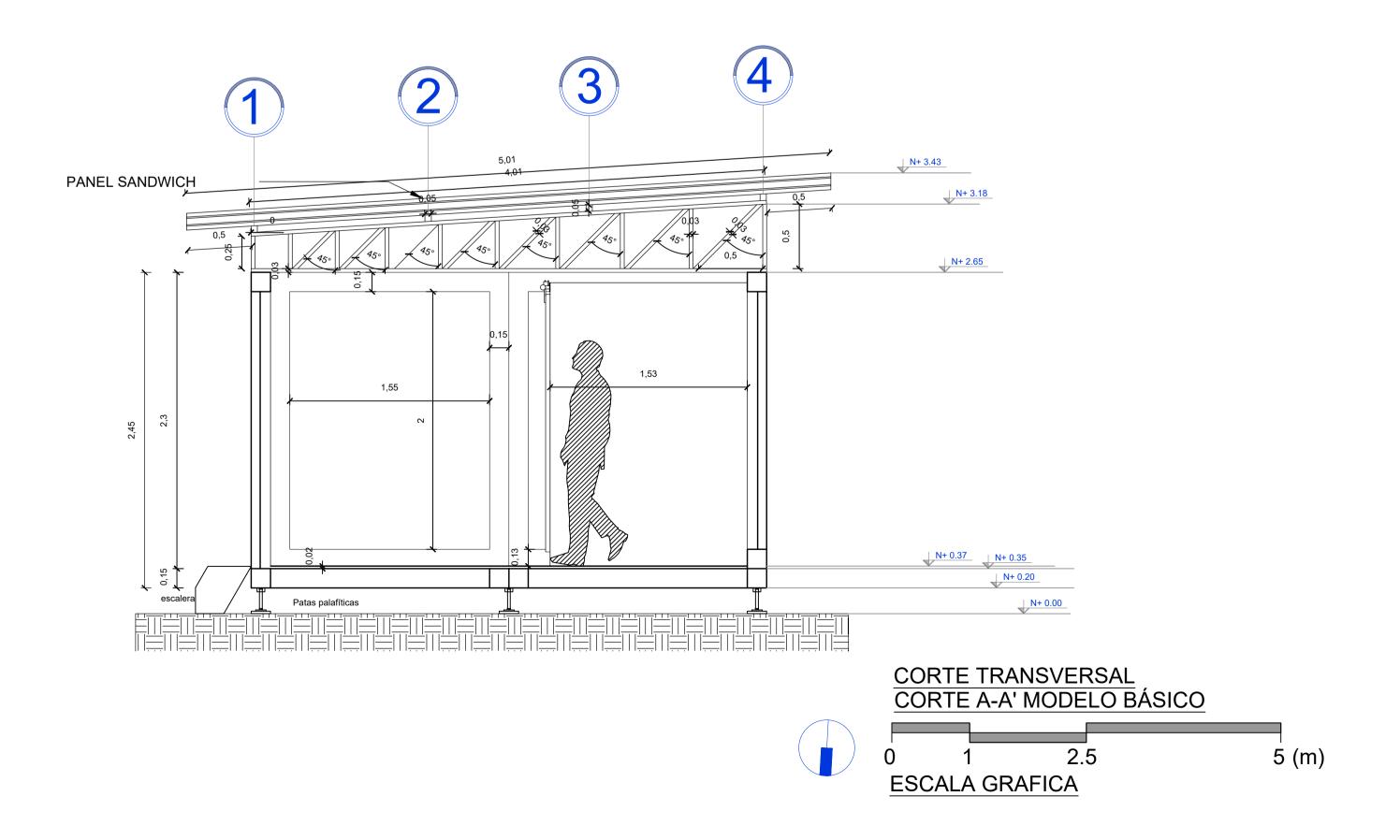
3 INTERRUPTORES

1. VIVIENDA MULTIFAMILIAR

BOMBILLO

TOMACORRIENTE

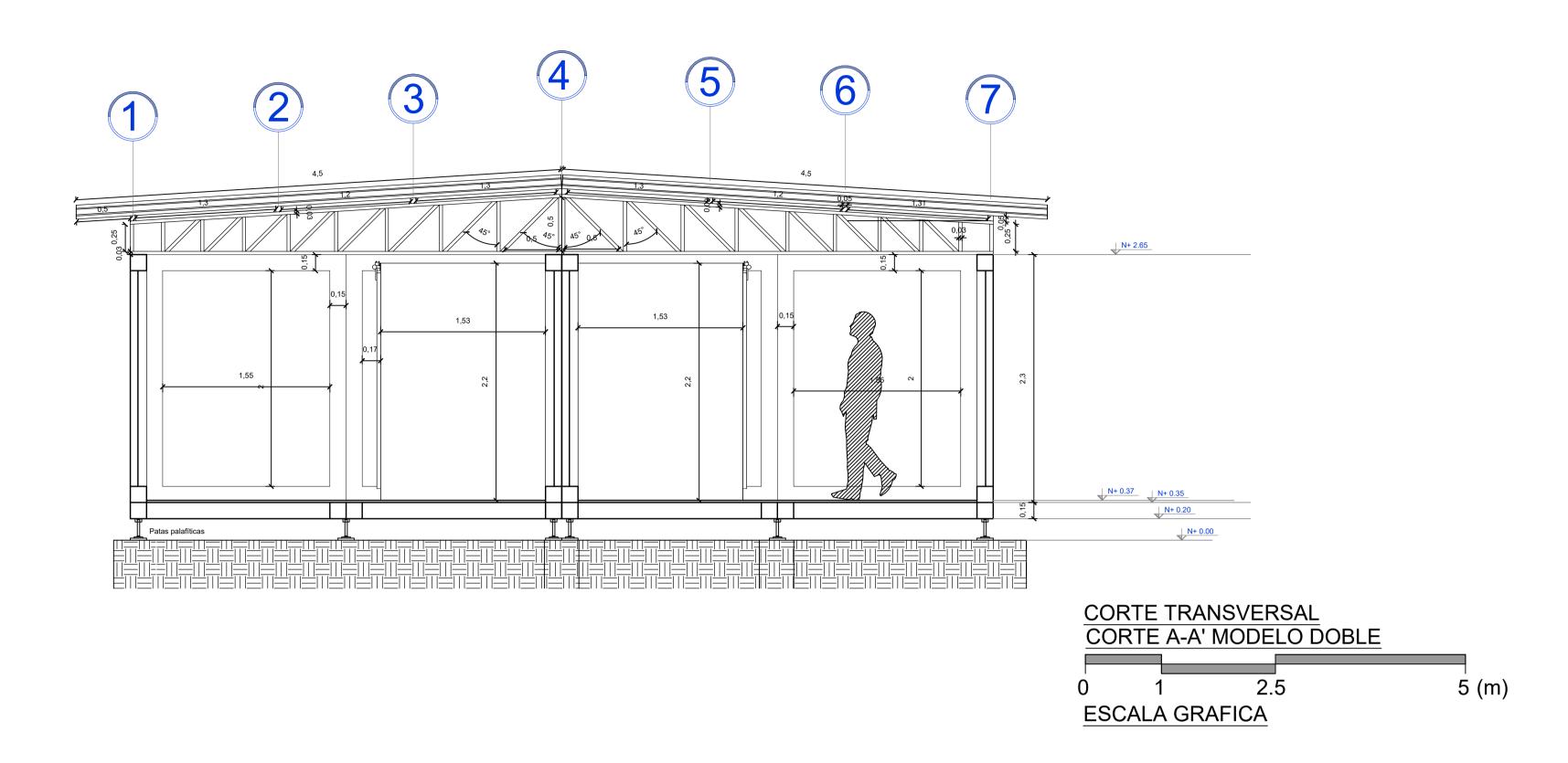

INTERRUPTOR

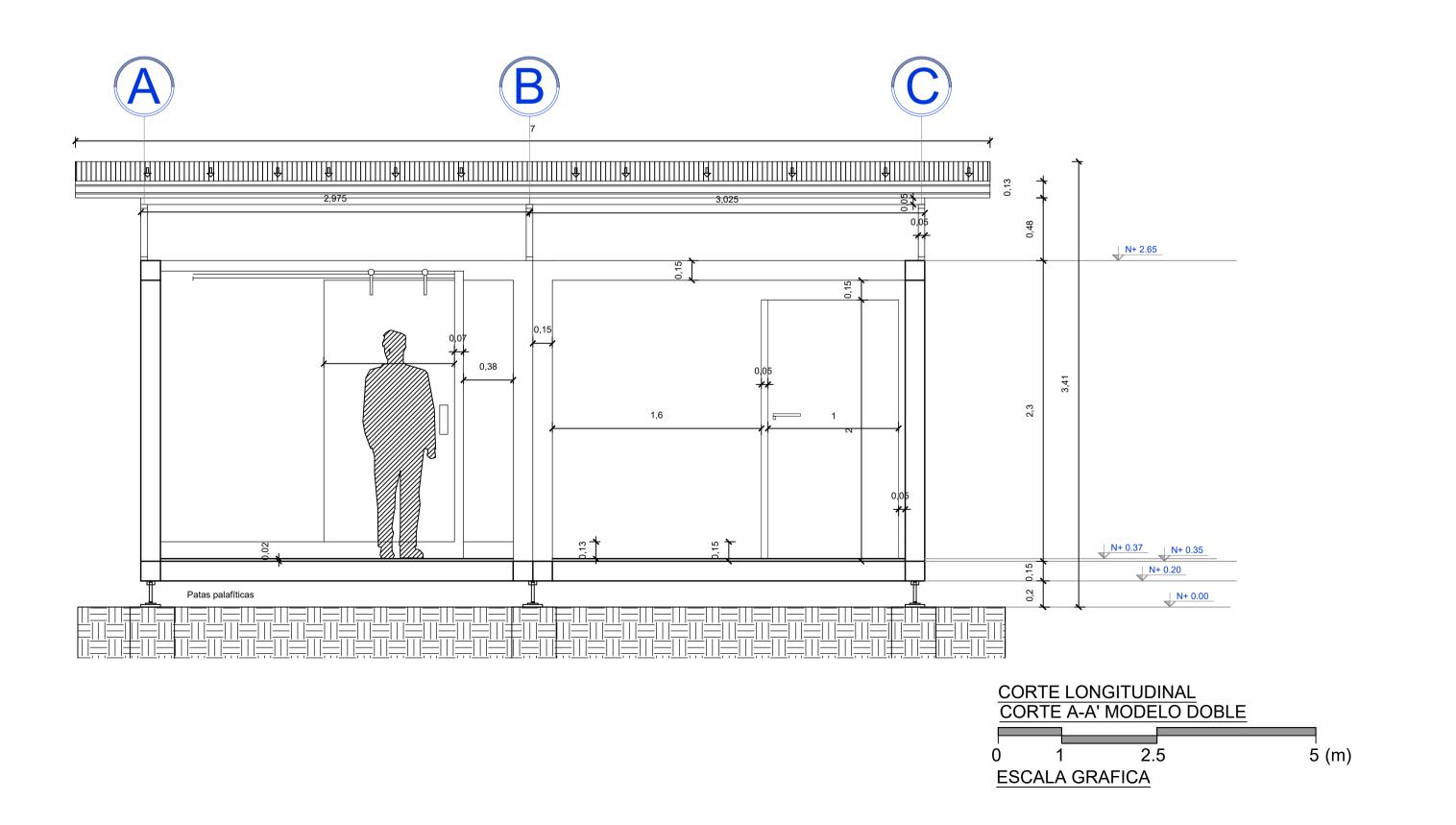

4	BOMBILLOS	
10	TOMACORRIENTES	
4	INTERRUPTORES	

 \boxtimes

Д

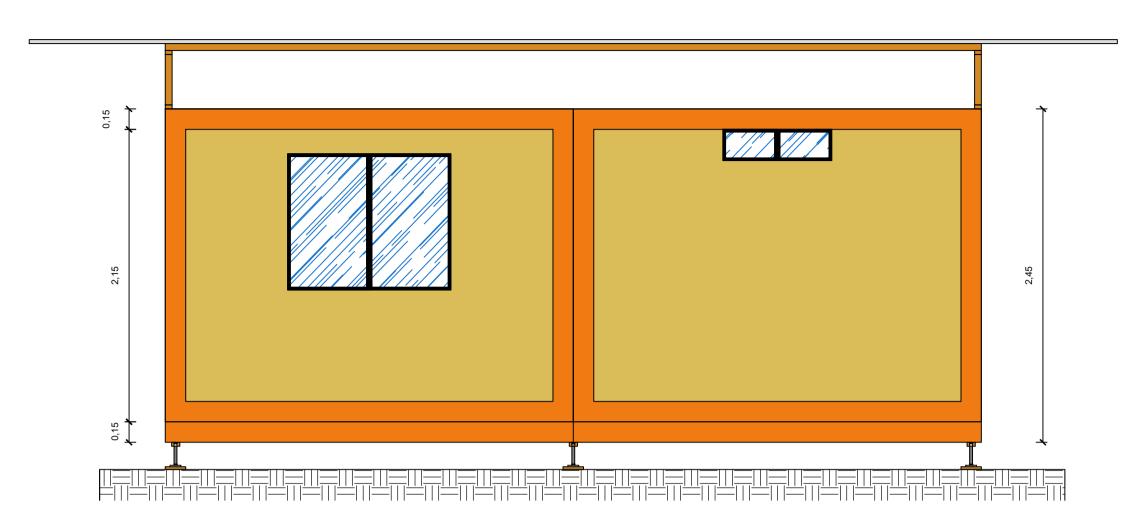


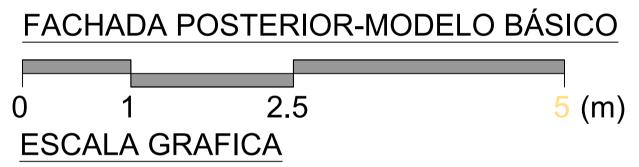


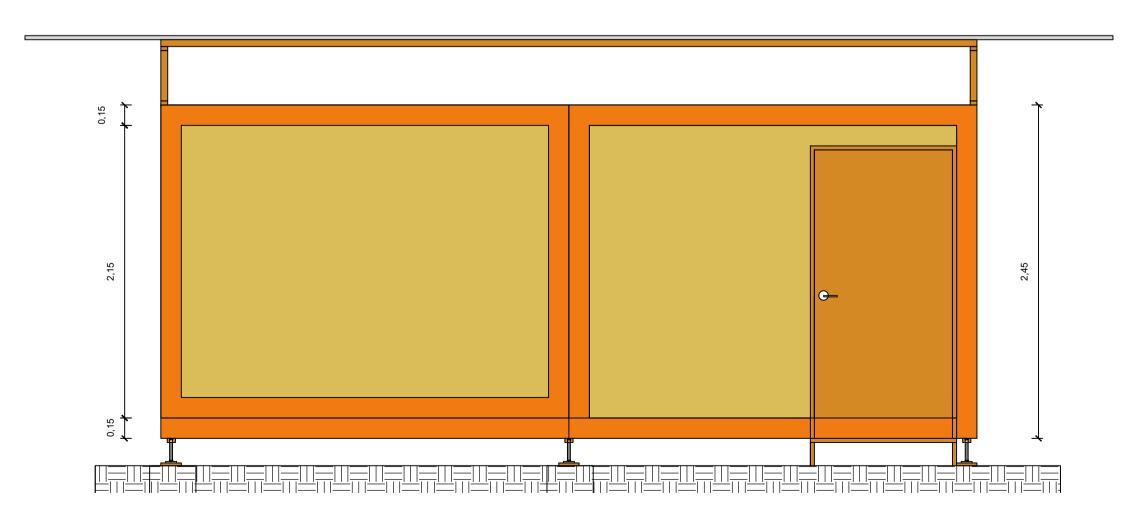


1. VIVIENDA UNIFAMILIAR

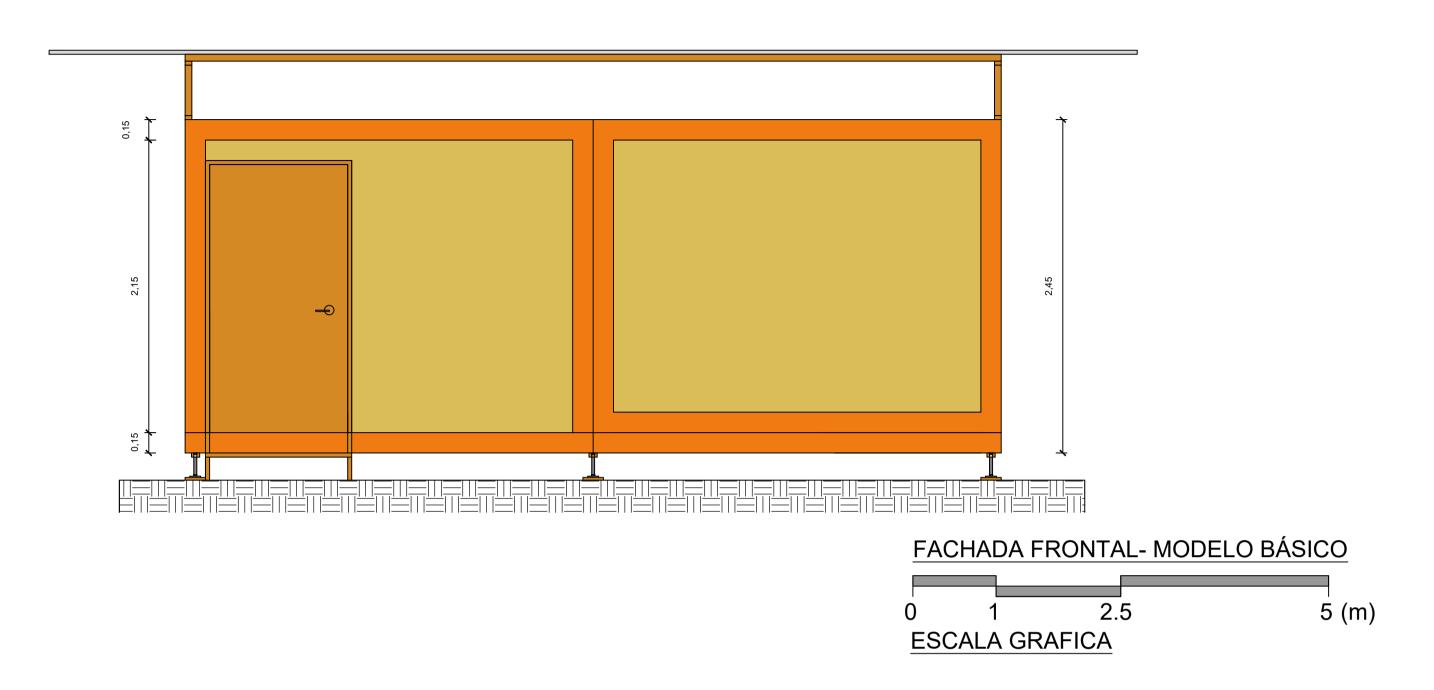
Vivienda de tipo Unifamiliar, que está diseñada para dar alojo temporal a una familia de 4 personas

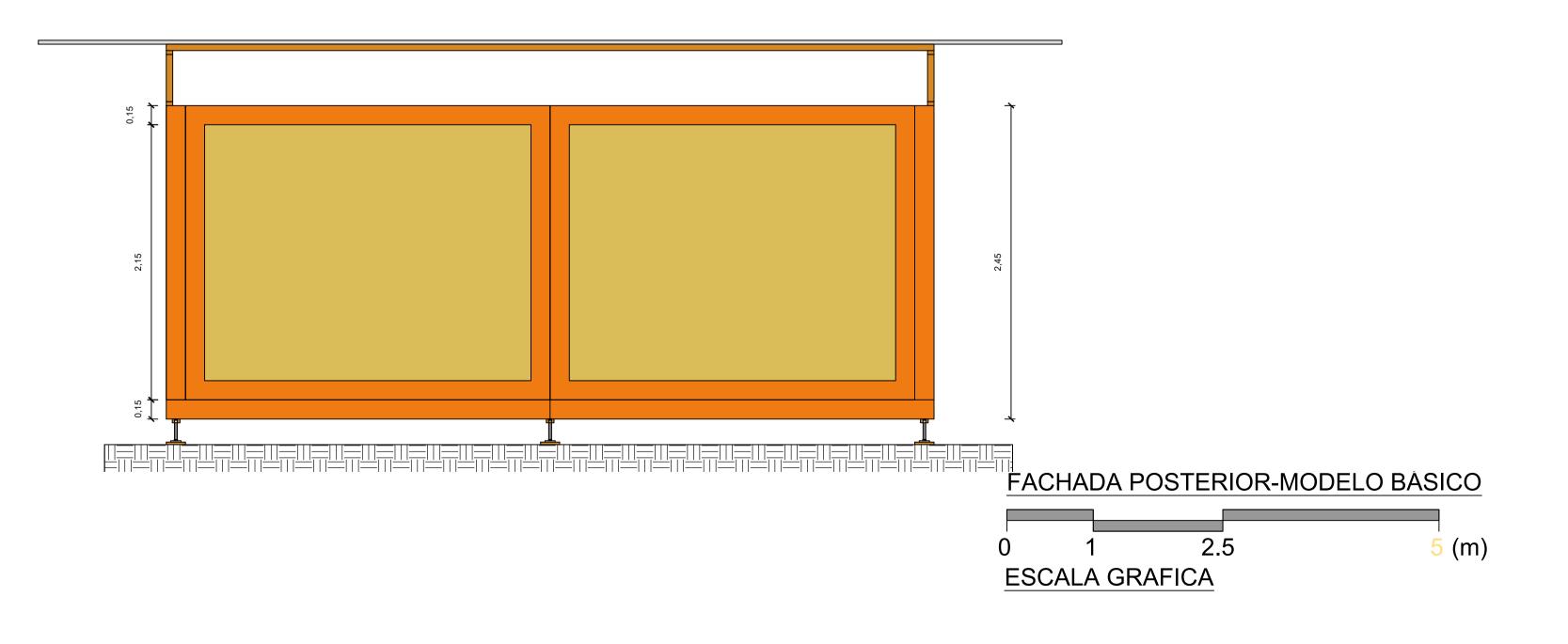





1. VIVIENDA MULTIFAMILIAR

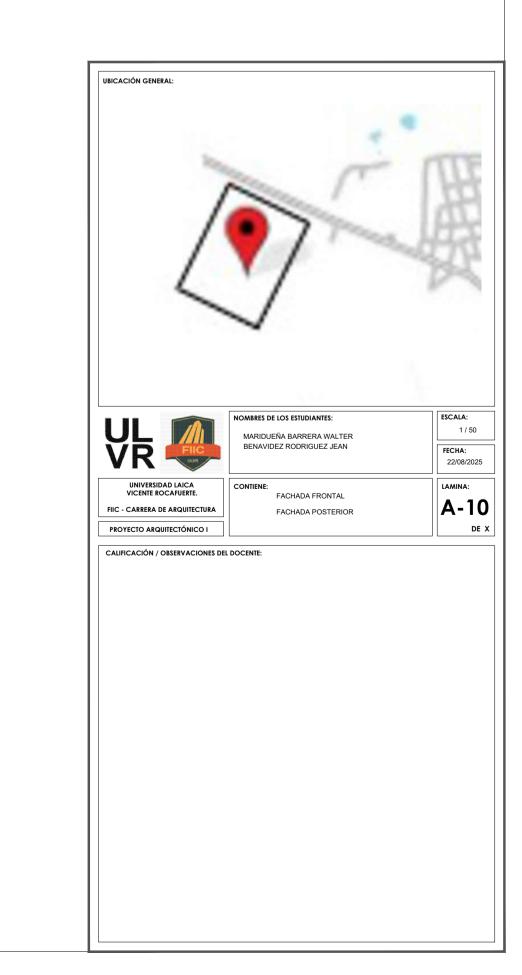
Vivienda de tipo multifamiliar, que está diseñada para dar alojo temporal a una familia de 8 personas.

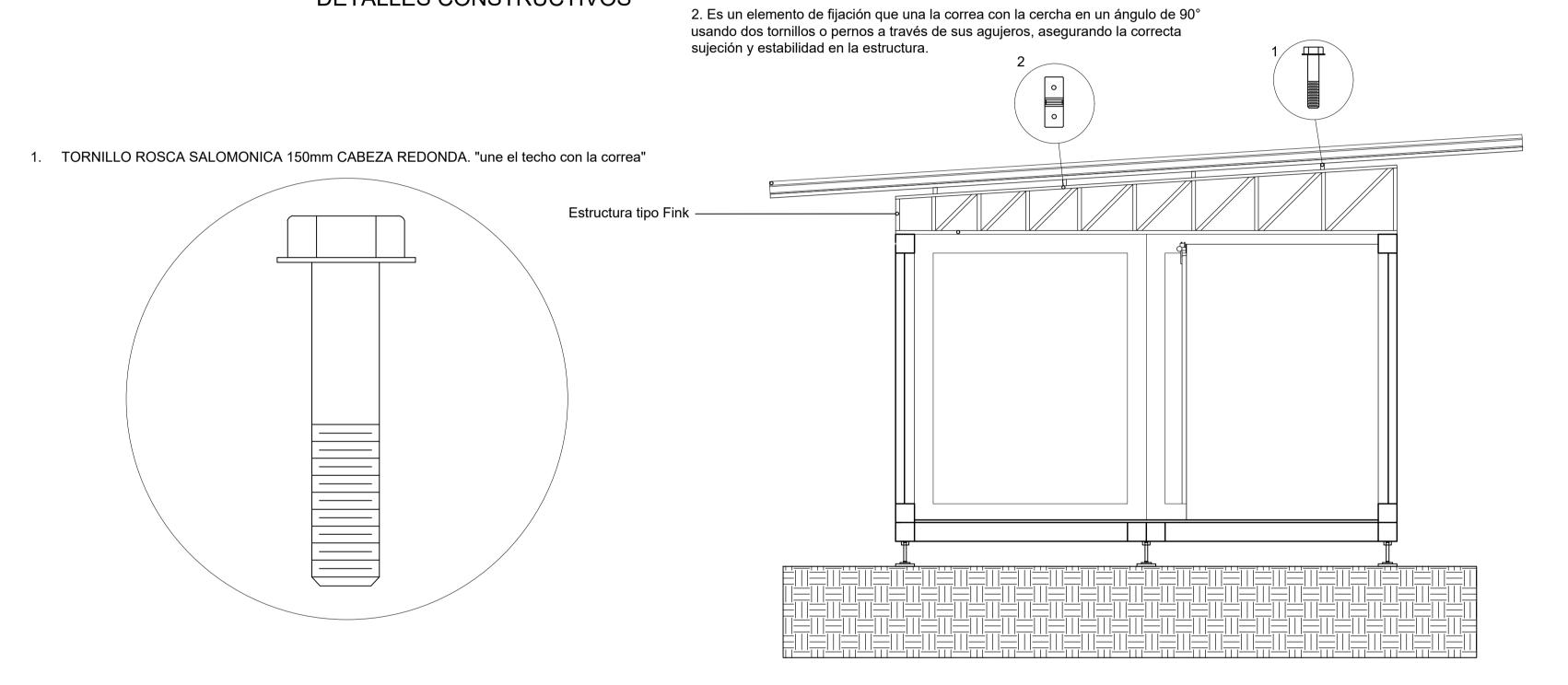

FACHADA FRONTAL- MODELO BÁSICO 0 1 2.5 5 (n ESCALA GRAFICA


LEYENDA

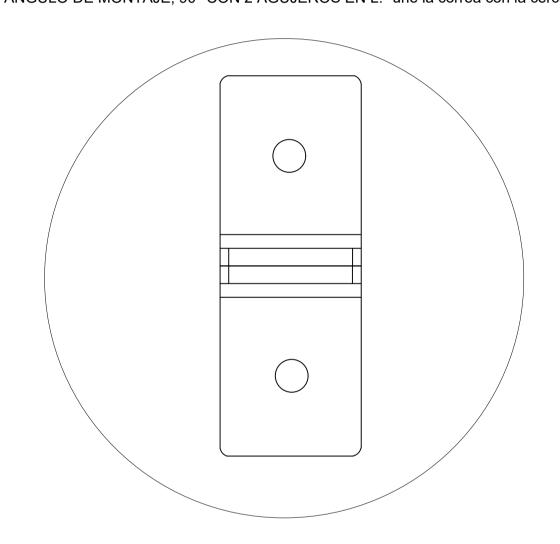
1. VIVIENDA UNIFAMILIAR

Vivienda de tipo Unifamiliar, que está diseñada para dar alojo temporal a una familia de 4 personas




1. VIVIENDA MULTIFAMILIAR

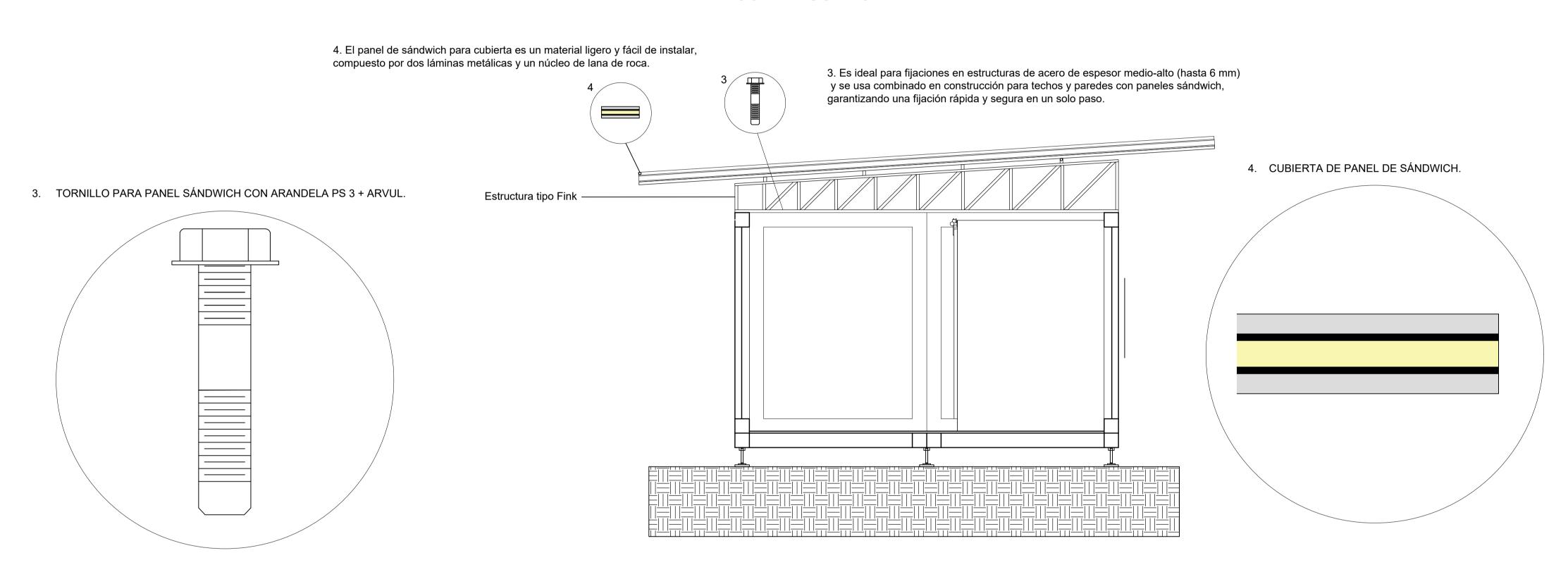
Vivienda de tipo multifamiliar, que está diseñada para dar alojo temporal a una familia de 8 personas.



Este tornillo es ideal para fijar entre sí componentes estructurales, asegurando estabilidad y resistencia en la unión del techo con las correas en edificaciones.

DETALLES CONSTRUCTIVOS

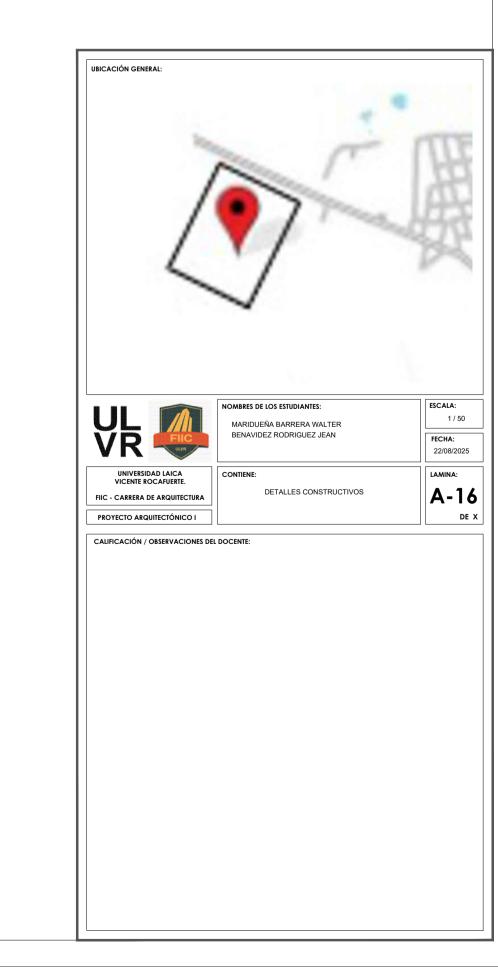
2. ÁNGULO DE MONTAJE, 90° CON 2 AGUJEROS EN L. "une la correa con la cercha"

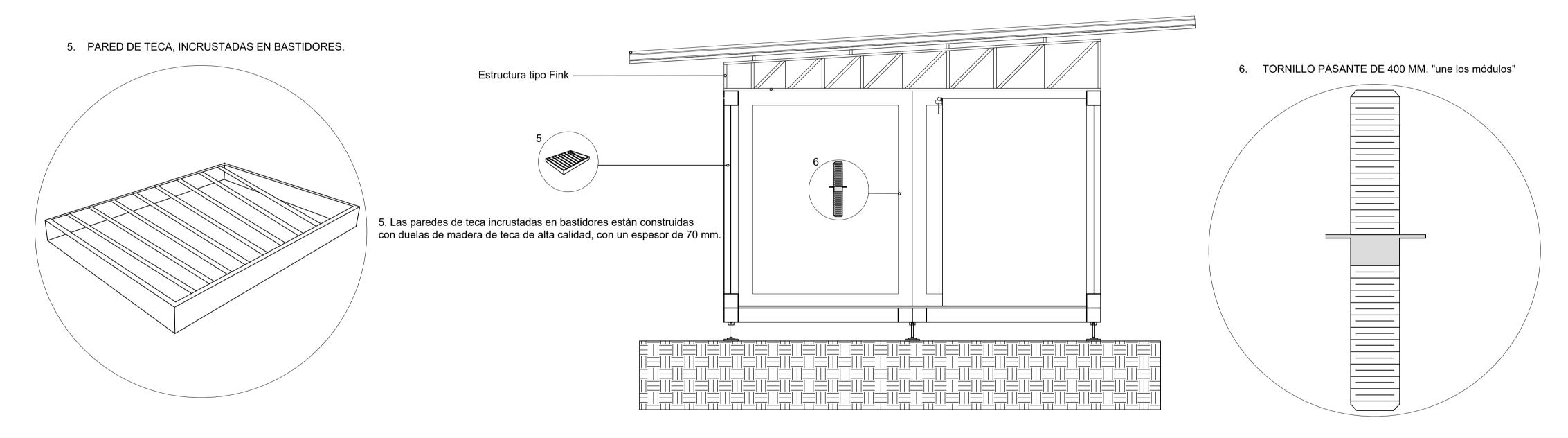

LEYENDA

Tornillo rosca salomónica 150 mm cabeza redonda

Ángulo de montaje, 90° con dos agujeros en L

Estructura tipo flink

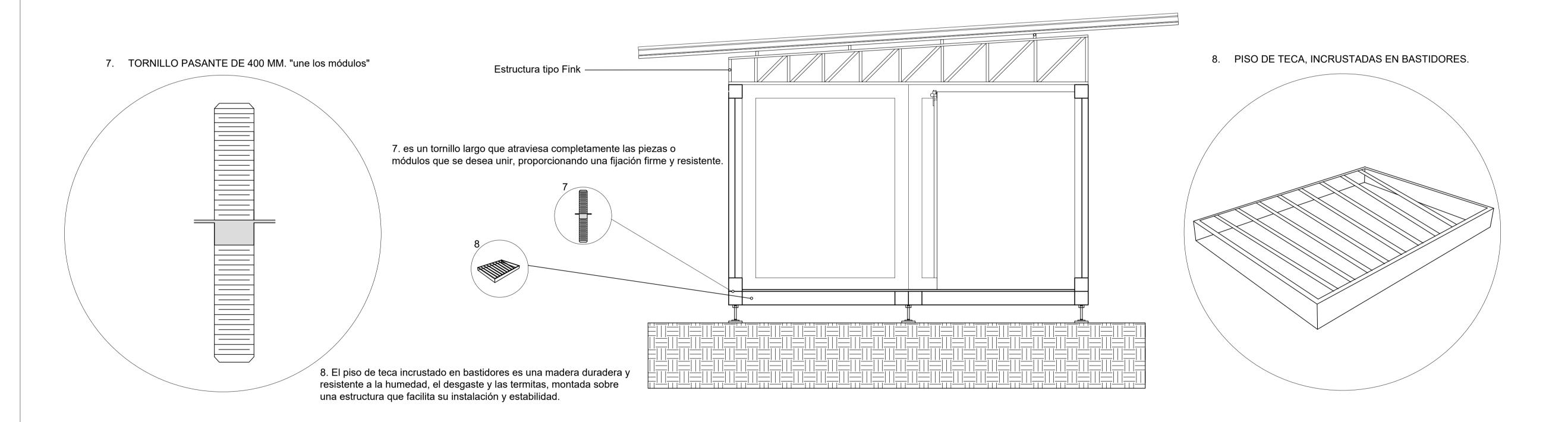



LEYENDA

Cubierta de panel de sándwich

Tornillo para panel sándwich con arandela PS3+ARVUL

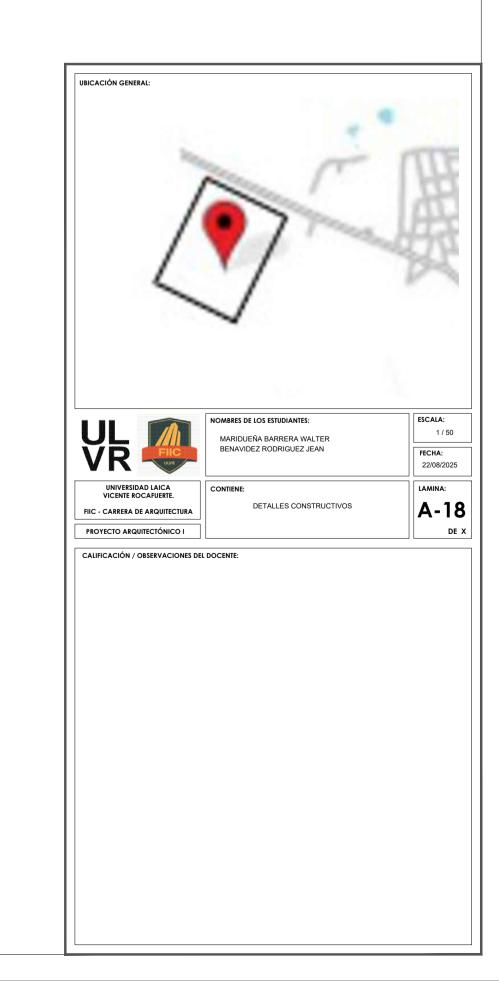
6. Es un elemento de fijación que una la correa con la cercha en un ángulo de 90° usando dos tornillos o pernos a través de sus agujeros, asegurando la correcta sujeción y estabilidad en la estructura.

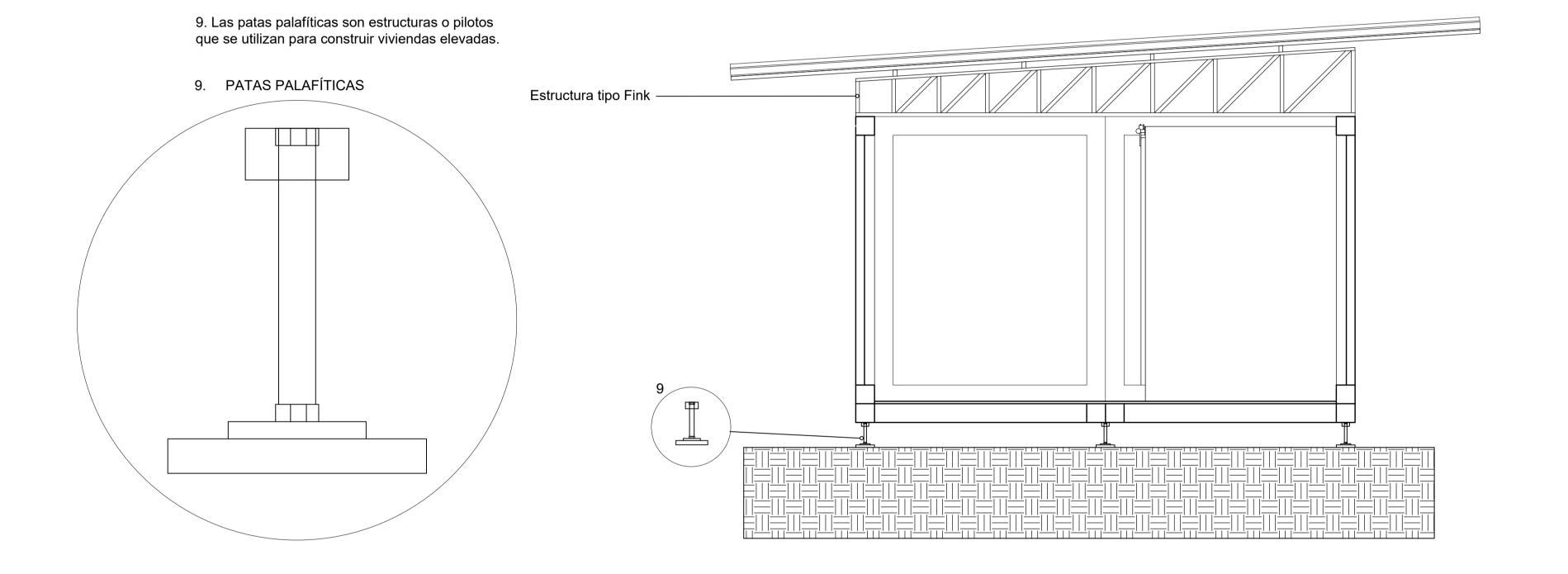


LEYENDA

Paredes de teca

Tornillo pasante de 40mm




LEYENDA

Paredes de teca

Tornillo pasante de 40mm

Piso de teca

LEYENDA

Patas palafíticas

